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Section I: Introduction 
 
Background 
 
In May 2009, an Action paper was passed by the APA Assembly (and approved by the Board of Trustees 
in July 2012) calling for the developed of an APA Position Paper on the Clinical Application of Brain 
Imaging in Psychiatry. This action paper was developed in response to questions raised by claims being 
made that brain imaging technology had already reached the point that it was useful for making a 
clinical diagnosis and for helping in treatment selection.  Given the APA’s mission to educate both its 
members and the public-at-large about the science and clinical practice of psychiatry, the Workgroup 
was appointed under the auspices of the APA Council on Research in January 2010 to develop an 
evidenced-based review of the current state of the art of clinical utility of brain imaging for psychiatric 
diagnosis and for predicting treatment response in the following diagnostic areas: adult mood and 
anxiety disorders, psychotic disorders, cognitive disorders, substance use disorders, and childhood 
disorders including ADHD, Bipolar Disorder, Depression/Anxiety, and Autistic Disorder. This paper, which 
was updated in 2017 (and approved by the Board of Trustees in 2018) begins with a general introduction 
about the challenges in developing valid and reliable biomarkers for psychiatric disorders and then 
provides a comprehensive review of the current research on brain imaging biomarkers across the 
various diagnostic categories. Although there are a number of promising results presented, by the 
standards proposed in the introduction to this paper, there are currently no brain imaging biomarkers 
that are clinically useful for any diagnostic category in psychiatry. 
 
 
Overview of Applications of Neuroimaging in Psychiatric Disorders 

The application of neuroimaging technology in psychiatric research has revolutionized clinical 
neuroscience perspectives on the pathophysiology of the major psychiatric disorders. Research using a 
variety of types of neuroimaging techniques has shown that these conditions are associated with 
abnormalities of brain function, structure and receptor pharmacology. These data also corroborate the 
conclusions reached from genetic, endocrine, and clinical pharmacology research involving these 
disorders to suggest that under the current nosology the major psychiatric disorders likely reflect 
heterogenous groups of disorders with respect to pathophysiology and etiology. 
 
Despite the invaluable leads that the neuroimaging studies have provided regarding the neurobiological 
bases for psychiatric disorders, they have yet to impact significantly the diagnosis or treatment of 
individual patients. In clinical medicine, considerable interest exists in developing objective, biologically-
based tests for psychiatric illnesses. From a clinical perspective such advances could yield important 



benefits such as predicting treatment response, differentiating between related diagnostic categories, 
and potentially treating at-risk patients prophylactically to prevent the development of neuropathology 
and clinical deterioration.  Nevertheless, the effect size of neuroimaging and other noninvasive 
biological abnormalities identified to date in psychiatric disorders has been relatively small, and the 
imaging measures established by replication across laboratories do not provide sufficient specificity and 
sensitivity to accurately classify individual cases with respect to the presence of a psychiatric illness. This 
review focuses specifically on the potential clinical utility of biomarkers assessed using modern 
neuroimaging technologies, and the approach required to validate imaging biomarkers for use as clinical 
diagnostics. 
 
The Quest for Biomarkers in Psychiatry 
 
Both the clinical practice of psychiatry and the development of novel therapeutics have been hindered 
by the lack of biomarkers that can serve as accessible, objective indices of the complex biological 
phenomena that underpin psychiatric illness. The inaccessibility of brain tissue, the lack of knowledge 
about pathophysiology, and the uncertain link between abnormal measurements on any biological test 
and pathogenesis all have impeded the development of biomarkers for psychiatric disorders. As a result, 
progress toward improving diagnostic capabilities and defining or predicting treatment outcome in 
psychiatry has lagged that achieved in other areas of medicine. Thus, it frequently remains difficult to 
establish whether individual patients suffer from a particular disease, how individual patients can best 
be treated, and whether experimental treatments are effective in general.  
 
The need for clinical biomarkers has become acute, as their absence particularly has hindered research 
aimed at developing novel therapeutics. Due at least partly to the lack of well-established 
pathophysiological targets for new drugs, relatively large numbers of experimental compounds are 
failing in increasingly expensive late-stage clinical trials. As a result, drug development pipelines contain 
few compounds that offer clinically meaningful differentiation from currently available treatments, and 
many companies have discontinued their research and development of pharmaceuticals for psychiatric 
conditions. The ramifications of these limitations for clinical practice also are significant, as psychiatric 
nosology and diagnosis largely have remained at a standstill since the development of DSM-III, the 
clinical approach to treatment decisions for individual patients remains empirical (“trial and error”), and 
many patients remain inadequately helped by extant treatments.   
 
Current Application of Neuroimaging Biomarkers in Psychiatric Diagnosis 
 
For over two decades imaging has maintained a well-established but narrow place in the diagnostic 
evaluation of patients with psychiatric disease, largely because of the usefulness of neuromorphological 
MRI in detecting and characterizing structural brain abnormalities such as lesions and atrophy. Thus, the 
role of imaging in patients with psychopathology historically has been limited to one of exclusion of 
potentially etiological medical conditions: namely to rule out neoplasm, hematoma, hydrocephalus, or 
other neurological causes of psychiatric symptoms that are treatable with neurosurgery or medications, 
or to detect the presence of cerebrovascular disease or gross atrophy. Although clinically important, 
these conditions appear to play a role in the pathogenesis of psychiatric symptoms in only a small 
proportion of cases presenting for the evaluation of mood, anxiety or psychotic disorders.  
 
Increasingly a major quest of researchers has been to identify neuroimaging results that offer diagnostic 
capabilities for major psychiatric diseases as well as for their relevant differential diagnoses. Currently 
neuroimaging is not recommended within either the U.S. or the European practice guidelines for 



positively defining diagnosis of any primary psychiatric disorder. Nevertheless, advances in research 
applications of neuroimaging technology have provided leads that may foreshadow future clinical 
applications of imaging biomarkers for establishing diagnosis and predicting illness course or treatment 
outcome. The ensuing review discusses issues that have been addressed within other areas of clinical 
medicine to establish the validity and reliability of imaging diagnostics, with the aim of providing 
principles to guide the evaluation of neuroimaging applications in clinical psychiatry.  
 
Biomarker Definition, Validation and Qualification 
 
The NIH has defined a biomarker (i.e., biological marker) as: “A characteristic that is objectively 
measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention.” (De Gruttola et al. 2001). A biomarker thus can 
define a physiological, pathological, or anatomical characteristic or measurement that putatively relates 
to some aspect of either normal or abnormal biological function or structure. Biomarkers thus may 
assess many different types of biological characteristics, including receptor or protein binding, 
hemodynamic parameters, MRI or radiographic images of structure composition, other imaging-based 
measures, or electrophysiological parameters. 
 
The term "biomarker" connotes different meanings in different contexts, based upon the intended 
application of the information a biomarker provides. Within clinical medicine, biomarkers include 
measures that suggest the etiology of, susceptibility to, activity levels of, or progress of a disease. In 
addition, alterations in patient-associated biomarkers related to an intervention may be used to predict 
the likelihood of experiencing a robust clinical outcome or an adverse reaction to a treatment. Finally, in 
drug development a biomarker can be any measure of drug action that is proximal to its clinical effect, 
including biomarkers that correlate with drug response or quantify the extent to which a drug occupies 
the molecular target. 
 
Notably, the U.S. Food and Drug Administration (FDA) recently has developed guidance that addresses 
multiple types of biomarkers which are applicable to drug development, including prognostic, 
predictive, pharmacodynamic, and surrogate biomarkers. A prognostic biomarker is a baseline patient or 
disease characteristic that categorizes patients by degree of risk for disease occurrence or progression. A 
predictive biomarker is a baseline characteristic that categorizes patients by their likelihood for response 
to a particular treatment. A pharmacodynamic biomarker is an assessment of physiological or structural 
change that shows that a biological response has occurred in a patient after having received a 
therapeutic intervention. A surrogate endpoint is defined as a biomarker intended to substitute for a 
clinical efficacy endpoint. Conceivably each of these biomarker types holds the potential to be clinically 
useful in psychiatric research or practice. Nevertheless, in its guidance the FDA identified the most 
valuable role for biomarkers as their use in clinical diagnostics.  
 
In considering the development of neuroimaging biomarkers as clinical diagnostics, the FDA guidance on 
biomarkers for drug development merits comment. Generally, the requirements of biomarkers for 
quantification of drug effects in research and development, which depend upon population means with 
variance estimates, converge with the requirements of diagnostics in clinical practice, which are 
assessed on a perpatient basis. The common element in both is longitudinal quantification; both 
analyses require baseline and follow-up effects of treatments. For example, clinical evidence from the 
National Oncologic PET Registry motivated the expanded coverage by Medicare for FDGPET/CT in the 
detection and staging of cancer and in the monitoring of cancer treatment response. Therefore as 
diagnostics, biomarkers are of interest to health care providers and consumers for parallel applications, 



since earlier detection of disease facilitates earlier intervention, which when followed by effective, 
individualized treatment, can improve patient outcomes. 
 
With respect to establishing the utility of a biomarker, it is useful to distinguish between the terms 
“validation” and “qualification”. Validation generally refers to the determination of the performance 
characteristics of a measurement — for example, the measurement’s reliability, sensitivity and 
specificity — in measuring a discrete biological construct. The validation process is particularly relevant 
for securing regulatory approval to market techniques for commercial use as clinical diagnostics, as 
described in the subsequent section.  
 
The term qualification refers to establishing the credibility of a biomarker in its application to questions 
specifically relevant to drug development. In drug development the ultimate use of a biomarker is as a 
surrogate end point, which requires that the biomarker has been qualified to substitute for a clinical 
standard of truth (i.e., the biomarker reasonably predicts the clinical outcome and therefore can serve 
as a surrogate). After a biomarker is "qualified" by the FDA, industry can use the markers in a similar 
context in multiple drug trials, drug classes, or clinical disorders, without having to repeatedly seek the 
agency's approval ["Qualification Process for Drug Development Tools," 
(https://www.fda.gov/downloads/drugs/guidances/ucm230597.pdf)] The FDA qualification process for 
biomarkers also encompasses guidance on drug-development tools, including radiographic or other 
imaging-based measurements. Qualification of a drug-development tool is based on a conclusion that 
within the stated context of use, the results of assessment with the tool can be relied upon to have a 
specific interpretation and application under regulatory review. The FDA guidance indicates, "While a 
biomarker cannot become qualified without a reliable means to measure the biomarker, FDA clearance 
of a measurement device does not imply that the biomarker has been demonstrated to have a qualified 
use in drug development and evaluation."  Instead the qualification process is limited to specific patient 
populations and a specific therapeutic intervention. In addition to the biomarker assay validation data, 
clinical data are required to support the biomarker qualification.  A corollary of this regulatory principle 
is that the FDA qualification of a drug-development tool for one application does not extend to its use in 
other applications.  
 
Evaluating the Validity of Diagnostic Biomarkers in Clinical Medicine 
 
The validity of a diagnostic biomarker for any medical disorder generally is established via evaluation of 
its sensitivity, specificity, prior probability, positive predictive value, and negative predictive value 
(Mayeux 1998). Diagnostic sensitivity refers to the capacity of a biomarker to identify a substantial 
percentage of patients with the disease-of-interest; sensitivity is expressed as: true positive cases 
divided by [true positive cases plus false negative cases] x 100. A sensitivity of 100% thus corresponds to 
a marker that identifies 100% of patients with the target condition.  Diagnostic specificity refers to the 
capacity of a test to distinguish the target condition from normative conditions (e.g., aging) and other 
pathological conditions (e.g., other diseases) or related, nonspecific effects related to the illness (e.g., 
effects of drugs used to treat symptoms of the illness in question); specificity is expressed as: true 
negatives divided by [true negative cases plus false positive cases] x 100.  A test with 100% specificity 
would differentiate the target condition from other conditions in every case. Prior probability is defined 
as the frequency of occurrence of a disease in a particular population (true positives plus false negatives 
divided by the total population). A perfect biomarker would detect only true positives and no false 
negatives and thus would reflect accurately the prevalence of the disease in the population.  
 

https://www.fda.gov/downloads/drugs/guidances/ucm230597.pdf


Positive predictive value (PPV) is the percentage of people who have a positive test who can be shown 
by a definitive examination (e.g., subsequent biopsy or autopsy) to have the disease, calculated as the 
number of true positives divided by the sum of true positives plus false positives. A positive predictive 
value of 100% indicates that all patients with a positive test actually have the disease. For a biomarker to 
be considered useful clinically, it generally is expected to show a positive predictive value of 
approximately 80% or more (e.g., Consensus Report…1998). The PPV is heavily influenced by the prior 
probability, however, such that the PPV becomes smaller for increasingly rare events or conditions; as 
the frequency of the disease in the test population becomes smaller, the proportion of positive test 
results which reflect false positive results becomes larger.   
 
Negative predictive value represents the percentage of people with a negative test that subsequently 
proves not to have the disease on definitive examination, calculated as the number of true negatives 
divided by the sum of true negatives plus false negatives. A negative predictive value of 100% indicates 
that the test completely rules out the possibility that the individual has the disease, at least at the time 
the individual is tested. A reliable marker with a high negative predictive value is extremely useful in 
clinical medicine, although a test with low negative predictive value can in some cases still be useful if it 
also has high positive predictive value. 
 
In the development of medical laboratory tests or imaging assessment, the threshold for distinguishing 
abnormal from normal alters the sensitivity and specificity in opposite ways. If the threshold is set 
further from the distribution of normative values then the test becomes less sensitive for detecting true 
positives, but more specific for rejecting true negatives. The convention in establishing diagnostic tests 
for medical conditions has been to select an intermediate choice that minimizes the total error from 
both false positives and false negatives (Lilienfeld et al 1994). 
 
The Consensus Report of the Working Group on Molecular and Biochemical Markers of Alzheimer's 
Disease affords a meritorious example of balancing clinical utility and scientific rigor in developing 
guidelines for diagnostic biomarkers in neuropsychiatric disorders (Consensus Report….1998).  This 
Report recommended that to qualify as a biomarker, the measurement in question should detect a 
fundamental feature of neuropathology and be validated in neuropathologically-confirmed cases, and in 
such cases the test should show a sensitivity >80% for detecting AD and a specificity of >80% for 
distinguishing AD from other dementias.  
 
These guidelines were applied generally to the validation of PET biomarkers developed to estimate the 
density of β-amyloid neuritic plaque in the brain. While the neuropathological identification of amyloid 
plaques, typically at autopsy, has been recognized as essential to confirming the diagnosis of AD, PET 
radioligands for β-amyloid were developed simply to estimate the density of β-amyloid neuritic plaque 
in the brain (such plaques also have been detected in patients with some other neurologic disorders, as 
well as in elderly individuals with normal cognition; Yang et al. 2012). The validation of the first FDA-
approved neuroimaging biomarker for β-amyloid pathology in AD, [F-18]florbetapir, thus depended on 
the correlation of florbetapir-PET data acquired antemortem in terminally ill patients, with evidence of 
β-amyloid in the same subjects post mortem (Clark et al 2011). The results rated as positive or negative 
for β-amyloid agreed in 96% of 29 individuals assessed in the primary analysis cohort. As a secondary 
analysis in a non-autopsy cohort, florbetapir-PET images were rated as amyloid negative in 100% of 74 
younger individuals who were cognitively normal, suggesting that negative results on this test hold high 
negative predictive value. However, a subsequent study found that in healthy elderly individuals 
showing no evidence of cognitive decline (mean age =69.4 + 11.1 years) the florbetapir PET image was 



classified as amyloid positive in 14% via visual inspection and 23% using a quantitative threshold 
(Johnson et al. 2013). 
 
The FDA code of regulations (in 21 CFR 315.5[a]) mandates that the effectiveness of a diagnostic 
radiopharmaceutical agent should be determined by an evaluation of the ability of 
the agent to provide useful clinical information related to the proposed indications for use (reviewed in 
Yang et al. 2012). Since current clinical criteria for returning a diagnosis of “probable AD” provide a 
sensitivity of about 85% when compared subsequently to autopsy-confirmed cases of AD, to be clinically 
useful an imaging biomarker ideally would show sensitivity exceeding this value when correlated to 
neuropathology (otherwise there is no benefit to performing the test).  Ultimately, two FDA advisory 
committees endorsed the implicit clinical value of information obtained from brain β-amyloid imaging, 
and the florbetapir approval was based on this endorsement along with clinical data showing sufficient 
scan reliability and performance characteristics.  
 
The FDA approved label (https://pi.lilly.com/us/amyvid-uspi.pdf) states that [F-18]florbetapir is 
indicated “to estimate β-amyloid neuritic plaque density in adult patients with cognitive impairment 
who are being evaluated for AD and other causes of cognitive decline. A negative Amyvid [florbetapir] 
scan indicates sparse to no neuritic plaques, and is inconsistent with a neuropathological diagnosis of AD 
at the time of image acquisition; a negative scan result reduces the likelihood that a patient’s cognitive 
impairment is due to AD. A positive Amyvid scan indicates moderate to frequent amyloid neuritic 
plaques; neuropathological examination has shown this amount of amyloid neuritic plaque is present in 
patients with AD, but may also be present in patients with other types of neurologic conditions as well 
as older people with normal cognition.” Based upon the limitations of the extant clinical data using this 
biomarker, the FDA also required a “Limitations of Use” section stating that, “A positive Amyvid scan 
does not establish a diagnosis of AD or other cognitive disorder”, and that its “effectiveness has not 
been established for predicting development of dementia or other neurologic condition”. Finally, under 
“Warnings and Precautions”, the label states, “Image interpretation errors (especially false negatives) 
have been observed.”   
 
In regards to the latter concern, the outcome of the initial FDA evaluation of [F-18]florbetapir-PET 
illustrates another central principle in the validation of an imaging biomarker, namely that the reliability 
of ratings across radiologists must be relatively high. In January 2011, the Peripheral and Central 
Nervous System Drugs Advisory Committee of the FDA recommended against approval of the new drug 
application for [F-18]florbetapir injection, based largely on concerns about the variability of ratings 
across readers. The Advisory Committee chair said during an interview after the meeting, "We would 
like to see some structured training and evidence of consistency among readers" 
(http://www.medscape.com/viewarticle/739297).  In the pivotal trial described in the previous 
paragraph, Clark et al. (2011) used the median of three readers' visual ratings on a five-point scale to 
assign the extent to which the PET scan was positive for amyloid protein binding.  Since inspection of the 
data from individual readers raised questions about inter-rater reliability, the FDA response focused on 
the need to establish a reader-training program for market implementation that would ensure accuracy 
and consistency of interpretation of [F-18]florbetapir scans. To evaluate scan reliability a clinical study 
had new readers examine images acquired in individuals with presumptive AD or mild cognitive 
impairment, as well as persons with normal cognition. The previously obtained images from autopsied 
patients were also included in the study (NCT01550549). Among five readers who interpreted images 
from 151 subjects, the kappa score for interrater reliability was 0.83 (95% confidence interval, 0.78 to 
0.88). For the autopsy subgroup of 59 subjects, the median scan sensitivity was 82% (range, 69 to 92), 
and the median scan specificity was 95% (range, 90 to 95) for the five new readers. Nevertheless, the 

http://www.medscape.com/viewarticle/739297


FDA required the sponsoring company to institute a dedicated training program and mandated that the 
success of the reader-training process be further evaluated in a post-marketing study. 
 
The need to ensure that readers consistently can detect clear positive or negative results extends to the 
clinical application of any imaging procedure for which the results depend on the subjective 
interpretation of a reader.  For biological assays that can be objectively quantified, the accuracy often is 
characterized by comparing the assay results obtained for a known standard (e.g., a test sample with 
known concentration for the target compound) and the reliability or reproducibility is statistically 
expressed with respect to the variability in the quantitative results obtained after repeated testing on 
the same sample. In contrast, many types of clinical imaging assessments depend upon subjective 
interpretation, such as a radiologist’s reading of a radiographic or nuclear medicine (e.g., PET, SPECT) 
image based upon gross visual inspection of the image. In this case, the variability of such 
interpretations is evaluated by characterizing the reliability and variability of the results obtained within 
and across raters.  
 
Thus, intra-rater reliability can be established by assessing the extent to which readings performed 
under blind conditions by the same reader on the same image on different days are in agreement, as 
well as the extent to which the same reader returns the same results when comparing multiple images 
obtained from the same patient across different days.  Similarly, inter-rater reliability is assessed by 
having multiple radiologists read the same set of images while blind to the evaluations returned by the 
other readers.  These intra-rater and inter-rater reliability assessments thus evaluate, respectively, the 
intra-individual variability (reflecting the failure of a reader to be consistent with himself or herself) and 
the across-rater variability of interpretations (reflecting inconsistency of interpretation among different 
readers).  
 
Challenges in Establishing the Validity of Diagnostic Biomarkers in Psychiatry 
 
A critical challenge in the application of neuroimaging to psychiatric diagnosis is that the clinical utility of 
such tests depends partly upon their ability to distinguish multiple conditions from one other. Generally 
both the intra-individual and inter-individual variability of interpretation increases in proportion to the 
number of diagnostic categories that are considered clinically relevant. Thus the fewer the categories 
into which readers are assigning results, the greater the degree of agreement between readers.  This 
tendency was illustrated historically by the results of a landmark study that evaluated the variability in 
interpreting chest X-ray films during lung cancer screening (Lilienfeld and Kordan, 1966). The study 
radiologists showed 65.1% agreement when they were required to place the film results into one of five 
categories (suspected neoplasm, other significant pulmonary abnormality, cardiovascular abnormality, 
nonsignificant abnormality, and negative), compared to 89.4% agreement if they were instead required 
to place the results into only two categories (positive or negative for significant pulmonary abnormality). 
Presumably, a diagnostic biomarker assessment aimed at informing the differential diagnosis of 
psychiatric disorders would need to address more than two categories, however, increasing the 
variability of image interpretations across readers. 
 
In psychiatry, the need to differentiate various conditions from each other depends partly on the clinical 
imperative to return distinct treatment recommendations for different disorders. It might be argued, for 
example, that for a neuroimaging procedure to add clinical value in the evaluation of an adult patient 
with impaired attention, differentiation is needed between at least four categories, namely major 
depressive disorder, bipolar disorder, attention deficit disorder, and anxiety disorders (American 
Psychiatric Association, 2000), since the standard of care differs between these categories. Thus, the 



variability across raters will be relatively higher (i.e., lower inter-rater reliability) for a diagnostic imaging 
study that must differentiate among several psychiatric disorders that share symptomatology but 
require distinct treatment approaches, as compared to the case described above for [F-18]florbetapir-
PET, which hinged on only two categories (β-amyloid positive versus negative).  
 
A more challenging problem for the development of diagnostic biomarkers in psychiatry has been that 
the absence of certain knowledge about the pathophysiology of psychiatric disorders precludes the 
identification and validation of such biomarkers. For example, the determinations of positive and 
negative predictive value are limited by the absence of an established objective standard for 
establishing diagnosis in psychiatric disease (e.g., analogous to the neuropathologically verified 
diagnosis of AD). In contrast, greater optimism has been associated with establishing predictive 
biomarkers of treatment response and surrogate biomarkers of treatment outcome. Moreover, many 
examples pharmacodynamic biomarkers of the effect of pharmacological probes exist, and have proven 
useful to establish central target engagement for multiple classes of psychiatric treatment.  
 
Nevertheless, it may be argued that the Consensus Report of the Working Group on Molecular and 
Biochemical Markers of Alzheimer's Disease (1998) reviewed above offers a potential template for 
developing clinically-meaningful, diagnostic biomarkers of psychiatric disease as well.  Although the 
fundamental recommendation that “… to qualify as a biomarker the measurement in question should 
detect a fundamental feature of neuropathology and be validated in neuropathologically-confirmed 
cases” cannot yet be applied directly to psychiatric disorders, the neuroimaging field may nevertheless 
move forward using criteria based conventions (APA, 2013) as “gold-standard” diagnoses.  If this 
approach for establishing the “actual” diagnosis is accepted, then the remainder of this Consensus 
Report can be meaningfully adapted to biomarker validation in psychiatric disorders.  
 
This approach would require that a diagnostic biomarker would have a sensitivity >80% for detecting a 
particular psychiatric disorder and a specificity of >80% for distinguishing this disorder from other 
clinically relevant psychiatric or medical disorders (Table 1). The biomarker also should be reliable, 
reproducible, non-invasive, simple to perform, and (ideally) inexpensive. The validating data used to 
establish a biomarker must include confirmation by at least two independent sets of qualified 
investigators (i.e., with at least one constituting replication in an independent clinical sample studied 
using the same methodology) with the results published in peer-reviewed journals. Finally, to be 
clinically useful the biomarker should show a clear improvement over the current standard-of-care in 
accurately establishing a diagnosis based on corroborating evidence (e.g., obtained via prospective 
assessment of the longitudinal disease course). 
 
According to this standard, the psychiatric imaging literature currently does not support the application 
of any diagnostic biomarker to positively establish the presence of any primary psychiatric disorder. 
Although assessments of intra-rater and inter-rater reliabilities commonly are reported for quantitative 
neuroimaging measures, these have been limited to establishing measurement reliability (e.g., cerebral 
volumes or neuroreceptor binding potential), but not to the reliability of diagnostic classification.   
 
Similarly, the literature does not yet establish a predictive biomarker for therapeutic response to a 
specific treatment within psychiatric disorders. In the ensuing chapters, however, the results of some 
individual studies that used neuroimaging biomarkers to predict outcome to a specific treatment are 
reviewed to exemplify preliminary findings that ultimately could be validated as biomarkers, if they 
prove reproducible in an independent study conducted by an independent laboratory using the same 
methods in an independent participant sample, and if the biomarker measure proves sufficiently 



reliable, sensitive and specific to an extent that exceeds the current standard-of-care (i.e., psychiatric 
interview). 
 
Summary 
 
According to the conventions reviewed herein, the peer-reviewed, scientific literature does not yet 
establish the validity and clinical utility of an imaging biomarker or group of imaging biomarkers 
(“biomarker signature”) for use in determining the diagnosis of a particular psychiatric disorder or 
predicting the therapeutic response to a particular treatment. For example, there is not yet an 
independently replicated finding in the literature of a neuroimaging measure obtained from a specific 
region(s)-of-interest that has shown a sensitivity >80% for classifying individual patients as having a 
particular psychiatric disorder along with a specificity >80% for ruling out individuals who do not have 
the disorder. Similarly, there has not yet been an independently replicated neuroimaging measure that 
has shown both >80% sensitivity for predicting the therapeutic response to a specific treatment and 
>80% selectivity for identifying individuals who will not benefit from the treatment.    
 
Nevertheless, the future appears bright as neuroimaging technologies and image analysis 
methodologies continue to improve, and the ensuing sections review progress toward developing 
biomarkers using state-of-the-art neuroimaging technologies. This literature contains several 
noteworthy examples of individual studies for which sensitivity and/or specificity approach or exceed 
80%, and in which specificity relative to both healthy controls and patients with distinct diseases has 
been explored. It thus remains conceivable that some of these findings ultimately may prove 
reproducible and clinically useful in independent studies.    
 
Box 1 
RECOMMENDED STEPS IN THE PROCESS OF ESTABLISHING A BIOMARKER 

1. There should be at least two independent studies that specify the biomarker’s sensitivity, 
specificity, and positive and negative predictive values.  

2. The sensitivity and specificity of the biomarker should be no less than 80%; positive predictive 
value should exceed 80%. 

3. These validation studies should be well powered, conducted by investigators with expertise to 
conduct such studies, and the results published in peer-reviewed journals. 

4. The studies should specify the type of control subjects, and include healthy subjects as well as 
those with related but distinct illnesses.  

5. Once a biomarker is accepted, follow-up data should be collected and disseminated to 
monitor its accuracy and diagnostic value within the relevant clinical population.  

Adapted from (Consensus Report…1998) 
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Section II: Progress Toward Diagnostic Imaging Biomarkers of Mood Disorders1 

 

While statistically significant group differences in various neuroimaging measures are 

commonly observed in patients with mood disorders, translating these findings into diagnostic 

tests for the individual patient has proven difficult. In general, the conventional path to 

validating a diagnostic test is first to generate a potential discriminant function from a training 

cohort of affected participants and controls, and then to test this discriminant function in an 

independent cohort. Currently, no such tests have been validated through replication in an 

independent laboratory and subject sample, subject to peer-review. 

 

The challenges to developing diagnostic imaging biomarkers for mood disorders are numerous. 

Mood disorders are thought to comprise groups of disorders that are heterogenous with 

respect to etiology and pathophysiology. Consistent with this expectation considerable overlap 

exists in the statistical distributions of measurements obtained from individuals with mood 

disorders and those from healthy controls with respect to regional brain volumes, receptor 

binding potentials, metabolic and hemodynamic activity, and other neuroimaging measures. 

Secondly, functional neuroimaging measures – especially fMRI data– are highly sensitive to 

nonspecific alterations in patient physiology that may have little to do with mood symptoms 

(e.g. associated with caffeine consumption and nicotine exposure) (1, 2), and to physiological 

changes produced by medications used to treat psychiatric symptoms (e.g. benzodiazepines 

and antipsychotic drugs) or medical conditions that commonly occur comorbidly with mood 

disorders (e.g. diabetes mellitus and hypertension) (3)(4). The development of imaging-based 

diagnostic algorithms that are robust enough to be applied across cohorts and sites thus has 

proven challenging. Thirdly, in some cases psychotropic medication can alter the physical 

properties of the imaging signals (lithium’s effects on the T1 signal in MRI) used to discriminate 

white matter and gray matter boundaries using structural MRI or to assess hemodynamic 

changes during fMRI (e.g., some antipsychotic drugs alter the magnitude of the BOLD signal), 

potentially confounding measures of brain structure and function, and biasing classification 

                                                      
1 This section was written by Jonathan Savitz, Scott Rauch, Ziad Saad and Wayne C. Drevets 



algorithms (Cousins et al. 2013; Rӧder et al. 2013; Savitz & Drevets, 2016). The resultant models 

thus may distinguish patients from controls based on the impact of different classes of 

medication rather than diagnosis-specific neurophysiology. A corollary to this problem is that a 

model developed and trained on an unmedicated subject sample with a disorder may not 

sensitively classify individuals with the same disorder if they are medicated. 

 

The challenge in neuroimaging studies is to determine how best to identify the key prediction 

signals in the mass of data produced by state-of-the-art scanners for each participant. One 

approach is to apply machine learning, a group of algorithms that are used to derive models for 

predicting classes or outcomes from high-dimensional data (Arbabshirani et al. 2017). Machine 

learning approaches typically require a model building step using a training dataset, followed by 

a model testing step using an independent dataset.  For example, an empirical fMRI training 

dataset from one group of participants with a specific DSM-IV-diagnosis plus a healthy control 

group - is used to develop a model that optimally distinguishes between these groups. The 

resultant model then is tested on an independent dataset to assign class memberships to the 

new cases based on the patterns established from the training set. That is, the program 

“learns” from experience. 

 

Once a classification model has been developed, the gold standard is to validate it on an 

independent cohort of subjects obtained at a different study site, with the accuracy of each 

step dependent on including relatively large subject sample sizes. These requirements reflect 

the limitation of machine-learning that iterative training and cross-validation on the same data 

overestimate the classifier performance (Hastie et al. 2009), and that classifiers trained on one 

data set at a single site may not generalize to data collected at multiple sites (Nielsen et al. 

2013; Plitt et al. 2014). However, as discussed below, most of the papers published to date have 

relied exclusively upon less stringent validation methods (e.g., the “leave out one” approach), 

motivated largely by the relatively modest number of subjects included in each study (e.g., in 

most MRI-based studies that classified single subjects with MDD, the sample size of the 

depressed subject group has ranged from 18 to 57; Arbabshirani et al. 2017). That is, all 



subjects except one are initially chosen to comprise the training set and a model that best 

separates the diagnostic groups from each other is applied to the omitted participant to predict 

their diagnostic status or treatment response. The process then is iteratively applied to each 

participant to test the ability of the algorithm to distinguish between categories. That is, each 

omitted participant comprises one testing sample. This ‘leave one out’ approach provides an 

estimate of how well the particular modeling approach is expected to perform on independent 

data. To determine how well a particular model’s performance would generalize, however, it 

must be tested on an independent set of data that were not part of the training set.  

 

The accuracy of the classifier model is best represented by its sensitivity and specificity values. 

Sensitivity refers to the percentage of patients correctly classified as having the diagnosis while 

specificity refers to the percentage of healthy controls or controls with a different disorder who 

are correctly identified as not having the target condition.  

 

A laudatory example of developing machine learning algorithms to classify depressed subjects 

as well as to predict treatment response was reported by Drysdale et al (2016). These 

investigators used resting-state fMRI (rsfMRI), which measures spontaneous regional 

fluctuations in the BOLD signal, to identify MDD subtypes according to distinct patterns of 

functional connectivity (correlation of fluctuations) between brain regions. Their analyses 

revealed four “biotypes” defined by homogeneous patterns of dysfunctional connectivity in 

frontostriatal and limbic networks. They then showed that these biotypes were prognostically 

informative for predicting the antidepressant response to repeated transcranial magnetic 

stimulation (rTMS). Finally, they tested the sensitivity and specificity of the model for classifying 

participants as depressed or healthy in an independent data set acquired across multiple MRI 

centers.  

 

The approach followed in this study are instructive for their study design, attention to technical 

considerations for noise reduction, and combination of both clinical symptom ratings and 

rsfMRI data. First, they included only scans that were of sufficient technical quality to provide 



interpretable information. They then implemented standardized, state-of-the-art, 

preprocessing procedures to control for nonspecific motion-, scanner- and age-related effects 

in rsfMRI data, and co-registered the functional volumes to a common stereotaxic array to 

allow comparisons across individuals. They then applied a previously validated parcellation 

system to delineate 258 functional network nodes across the brain, from which they extracted 

BOLD signal time series. The correlation matrices calculated between each node provided an 

unbiased estimate of the whole-brain architecture of functional connectivity in each subject. 

They additionally used subject level clinical rating scale information both to identify anhedonia- 

and anxiety-weighted components in the rsfMRI subtypes, and to define a common functional 

anatomical “core of pathology” (encompassing insula, orbitofrontal cortex, ventromedial 

prefrontal cortex and subcortical areas implicated in previous studies of depression), which 

predicted the severity of three ‘core’ symptoms from the Hamilton Rating Scale for Depression 

present in almost all patients. Superimposed on this shared pathological core were distinct 

patterns of abnormal functional connectivity that differentiated four biotypes, which were 

further characterized by specific clinical-symptom profiles.  

 The clustering analysis was performed in a “cluster-discovery” sample (n = 220), in 

which classification of depressed versus healthy subjects was optimized in the full training data 

set (n=333 MDD participants; n=378 heathy controls), and leave-one-out cross-validation and 

permutation testing were used to assess performance and significance. Support-vector machine 

(SVM; a type of supervised learning model) classifiers yielded overall accuracy rates of up to 

89.2% for accurately classifying subjects into depressed versus control categories based on the 

regional connectivity features. In cross-validation (leave-one-out), individual patients and 

healthy controls were diagnosed correctly with sensitivities of 84.1–90.9% and specificities of 

84.1–92.5%. The investigators then tested the most successful classifier for each depression 

biotype in an independent replication data set consisting of 125 depressed participants and 352 

healthy controls imaged across13 study sites. Overall, 86.2% of subjects in this independent 

replication data set were correctly diagnosed as having MDD. 

 



Finally, to further validate the four MDD biotypes, Drysdale et al. assessed their temporal 

stability, prediction of treatment outcome, and specificity for classifying participants with other 

psychiatric disorders. In a subset of 50 depressed subjects who underwent a second rsfMRI 

scan 4–6 weeks after the first scan, 90% of subjects were assigned to the same biotype in both 

scans. In 124 subjects who received high-frequency rTMS of the dorsomedial prefrontal cortex 

for 5 weeks, rTMS proved effective for 82.5% (n= 33/40), 25.0% (n= 4/16), 61.0% (n= 25/41) and 

29.6% (n= 8/27) for biotypes 1, 2, 3 and 4 respectively. Classification of treatment response 

according to connectivity features plus biotype diagnosis yielded a predictive accuracy of 

89.6%, compared to only 62.6% when clinical symptoms alone were used to predict treatment 

outcome. Finally, among 39 patients diagnosed with generalized anxiety disorder, which is 

closely related to MDD, 69.2% were classified as belonging to one of the depression biotypes 

with most (59.3%) being assigned to the anxiety-associated biotype. In contrast, only 9.8% of 41 

patients with schizophrenia were classified into a depression biotype. 

 

While the Drysdale et al. (2016) algorithm for classifying MDD appears promising, future studies 

are needed to replicate these results in an independent laboratory and subject sample. The 

authors published the list of coordinate-based ROIs, but also would need to provide the model 

parameters for identifying subtypes as well as those for predicting rTMS response in order to 

enable replication attempts. A replication study should include a sufficiently large sample size 

to provide confidence about the subtyping approach. Ideally, future research also is needed to 

ensure that one or more of the biotypes is not simply driven by nonspecific effects (e.g., 

medications or co-morbidities). Finally, the reliability of the classifiers needs characterization 

using fMRI data acquired at varying spatial resolutions and from different MRI scanner types.  

 

Other researchers have explored the development of single-subject prediction/ classification 

models using task-based fMRI, diffusion MRI, or structural MRI-based measures of brain tissue 

composition. These studies have included smaller samples and their results were subjected to 

fewer validating comparisons than those reported by Drysdale et al. 2016. Moreover, their 

results also await replication in independent laboratories and subject samples. While these 



studies are reviewed elsewhere (Arbabshirani et al. 2017), some examples are described below 

to illustrate different types of imaging parameters that can be fruitfully studied for their 

potential as biomarkers. 

  

Sun et al. (5) created cortical density maps for 36 healthy controls and 36 patients with recent 

onset schizophrenia-spectrum or affective psychosis. On a group level, the patients displayed 

reduced gray matter density in regions such as the anterior cingulate and lateral surfaces of the 

prefrontal and temporal cortices compared to the control group. Machine learning methods 

then were applied to the data to test whether these findings could be applied at the individual 

subject level. Using a sparse multinomial logistic regression classifier, 129 surface voxels were 

linearly combined for classification allowing for 86% accuracy in distinguishing between 

patients and controls. Clusters with the highest weightings included the frontal pole, superior 

and middle temporal regions of the left hemisphere, and the superior temporal, somatomotor, 

and subgenual anterior cingulate cortex regions of the right hemisphere.  

 

In another structural MRI approach, Redlich et al. (2014) compared gray and white matter 

volumes between unipolar and bipolar depressives using voxel-based morphometry, and then 

developed a novel pattern classification approach to discriminate between groups. The study 

sample consisted of 58 currently depressed subjects with bipolar I disorder, 58 age- and sex-

matched unipolar depressed patients, and 58 matched healthy controls, with half of each 

subgroup imaged at one of two imaging sites. Using machine learning the classifier was trained 

at one imaging site and the model was tested in the independent sample from the other site. At 

both sites, individuals with BD showed reduced gray matter volumes in the hippocampus and 

amygdala relative to individuals with MDD, whereas individuals with MDD showed reduced gray 

matter volume in the subgenual anterior cingulate cortex compared with individuals with BD. 

Pattern classification yielded up to 79.3% accuracy for differentiating the two depressed groups 

by training and testing the classifier at one site, and up to 69.0% accuracy when this classifier 

was tested in the independent sample at the other site. Notably when individual subjects were 



instead classified into three categories, namely MDD, BD or healthy control, the best accuracy 

was reduced to 48.3% for testing in the independent sample.   

 

In a task-based fMRI study, Fu et al. (6) used the voxel-wise hemodynamic response to sad faces 

to distinguish depressed participants with MDD (n=19) from healthy controls (n=19) with 82% 

sensitivity and 89% specificity. Regions with the highest vector weights included the dorsal 

anterior cingulate, middle and superior frontal gyri, hippocampus, caudate, thalamus, and 

amygdala. The same group achieved a less robust 65% sensitivity and a 70% specificity with the 

use of a working memory paradigm in 20 healthy subjects and 20 unmedicated depressed 

subjects (7). Interestingly, despite the difference in task paradigm there was some overlap in 

the regions that distinguished patients and controls in the sad face task – namely the caudate, 

and the superior and middle-frontal gyri.  

 

In another task-based fMRI study, the hemodynamic responses within the default mode and 

temporal lobe networks during an auditory oddball paradigm were applied a priori to a sample 

of 14 medicated patients with bipolar disorder, type I (BD I), 21 medicated patients with 

schizophrenia, and 26 healthy controls (8). The authors could distinguish BD patients from 

schizophrenic patients with 83% sensitivity and 100% specificity.  

 

Hahn et al. (9) utilized three independent fMRI paradigms in an attempt to maximize 

classification accuracy: the passive viewing of emotionally-valenced faces, and two different 

versions of the monetary incentive delay task emphasizing potential winnings and potential 

losses, respectively. A decision tree algorithm derived from the combination of the imaging task 

classifiers produced a diagnostic sensitivity of 80% and a specificity of 87% in a sample of 30 

patients with depression (both unipolar and bipolar) and 30 healthy controls. 

 

In addition, several studies have used machine learning methods to evaluate predictors of 

response to treatment with antidepressant medication. In one study, a whole brain voxel-based 

morphometry (VBM) analysis predicted treatment response to fluoxetine with 89% sensitivity 



and 89% specificity. In contrast, the same algorithm derived from the VBM analysis only 

differentiated MDD patients (n=37) from healthy controls (n=37) with 65% sensitivity and 70% 

specificity (10). Response to treatment was associated with increased gray matter density of 

the rostral ACC, left posterior cingulate cortex, left middle frontal gyrus, and right occipital 

cortex at baseline (10).  

 

Gong et al. (11) used structural MRI to predict antidepressant efficacy in 61 treatment naïve 

patients with depression. Patients who failed to respond to 2 adequate trials of an 

antidepressant were distinguished from treatment responders with 70% sensitivity and 70% 

specificity based on gray and white matter volumes. The treatment responders had both 

greater and lower baseline volumes of different regions in the frontal, temporal, parietal and 

occipital cortices, as well lower baseline volume of the putamen (11).  

 

Using task-based fMRI, Costafreda and colleagues (12) reported that in 16 unmedicated 

patients who met criteria for a major depressive episode, pretreatment response to implicitly-

presented sad faces in regions such as the dorsal anterior cingulate cortex, midcingulate gyrus, 

superior frontal gyrus, and posterior cingulate cortex predicted subsequent response to 

cognitive behavioral therapy with a sensitivity of 71% and a specificity of 86%. 

 

Other attempts at predicting response to treatment have been less successful. The functional 

imaging correlates of a verbal working memory task only predicted response to fluoxetine with 

52% specificity, although sensitivity was 85% (7). Conversely, 62% of patients who achieved 

clinical remission and 75% of patients who did not remit following 8 weeks of antidepressant 

treatment, were correctly identified as responders and non-responders, respectively, with a sad 

face processing task (6). 

 

In sum, many of the published diagnostic classification and treatment prediction methods have 

yielded sensitivities and specificities that range from 80-90%. Nevertheless, none of the above-

mentioned studies has achieved this degree of success in an independent cohort, and this will 



be a crucial test for the field. Ultimately, the patient burden and/or risk of the scan, together 

with its financial cost, will have to be balanced against the potential benefits of testing in terms 

of improved outcomes and greater cost and time efficiencies. The extent to which diagnostic 

and treatment misclassification will be tolerated by clinicians and the health care industry may 

ultimately be determined by this cost-benefit ratio. 

 

Independent of the technical challenges involved in developing diagnostic algorithms, we raise 

the issue of whether the current approach to developing neuroimaging-based tests for the 

diagnosis of psychiatric disorders is philosophically flawed. The claim that the machine learning 

approach will lead to objective biomarkers of psychiatric illness that will supplant the clinical 

interview is circular because the algorithms are trained to categorize patients based on clinical 

(i.e. DSM-IV) diagnoses. Yet the raison d’etre of the biomarker is the future supersession of the 

subjective diagnosis as the gold standard. Our current diagnostic categories may subsume 

multiple distinct disorders and thus attempting to forcibly align neurobiology with DSM 

diagnoses is arguably regressive. In contrast, research that aims to identify neuroimaging 

biomarkers of treatment response should be encouraged as this approach is not subject to the 

same tautological trap. 

 

Ultimately the identification of neurobiologically distinct subtypes of mood disorders may be a 

more fruitful approach to understanding the underlying biology of psychiatric illness (13). The 

recent evidence of subtypes defined both by symptom clusters and immunometabolic 

biomarkers corroborates the existence of biologically distinct subgroups within the MDD 

population, which has important ramifications for studies of neuroimaging classifiers and 

treatment predictors (e.g., Lamers et al. 2013; Simmons et al. 2016). It is conceivable that 

combinations of neuroimaging data with immunometabolic or other biomarker types ultimately 

may prove more successful than either data type alone at providing diagnostic classification and 

treatment prediction models.   
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Section III: Progress Towards Biomarkers of Psychotic Disorders 

Written by Cameron Carter 

Going back to the original observations of enlarged ventricles in schizophrenia [1, 2] as well as 

to observations of  functional hypofrontality ([3], [4]) and increased striatal dopamine release 

[5] a broad range of reliable and well replicated changes in brain structure, function and 

chemistry and been revealed using modern neuroimaging techniques.   As is the case for many 

other behavioral and neurobiological measures that have been shown to be altered in 

schizophrenia, these widely replicated group differences belie a substantial degree over overlap 

between individual subject data from patients with schizophrenia compared to controls and 

other patient groups.  This has placed a major limitation on the use of neuroimaging as a 

diagnostic biomarker  of schizophrenia.  As imaging methods have become more sophisticated, 

leading to the generation of massive multidimensional data sets, there has been a renewed 

interest in the diagnostic use of these methods by applying a new set of statistical and 

computation tools that have gained traction in areas of biomedicine.  These new tools offer the 

hope of identifying subtle patterns in complex data sets that can be used to accurately identify 

group membership .  This approach, known as Classification Analysis, applies statistical and/or 

computational methods to identify a “hyperplane” of features in high dimensional data that can 

be used to distinguish between groups.  The goal of such an approach is to use individual 

subject MRI data (structural, functional or both) to differentiate between membership in 

diagnostic groups with high positive and negative predictive value.  

 
This is a rapidly developing field and there are now a number of reports of what would be 

considered good classification rates for samples that include schizophrenia patients and either 



healthy controls or patients with bipolar disorder.  This includes a small number of studies that 

report positive and negative predictive values that exceed 80% ([6, 7] Demirci, see also Calhoun 

[8]who presented specificity and sensitivity data in this range as well as a recent study by 

Squarcini et al (2017) in first episode patients).  Recent studies using multimodal imaging (such 

as the combination of fMRI functional connectivity data and MEG measures of oscillatory 

activity and other similar approaches using structural and functional MRI measures) have 

shown improved classification over that obtained using each method alone and it is likely that 

the use of multiple image based as well as other features (cognitive and clinical measures for 

example) might eventually lead to the development of valid and reliable diagnostic biomarkers 

(14)(Cetin et al, 2016), (Janousova et a., 2015).   

 

As discussed below, many of the studies published to date have significant methodological 

limitations and it is important to note that in no case has a method been independently 

replicated in an independent and comparable sample of patients and /or controls, one of the 

key requirements for diagnostic biomarker status as discussed in Section I.  Furthermore the 

very few studies that have tested the replicability of a classifier have performed much less than 

optimally (15) Schnack et al, 2015). 

 

 
As this research approach has matured it has also become clear that there are a number of 

critical methodological issues that have limited progress toward that application of this 

approach to enhance clinical diagnosis.  As discussed in Demirci et al (6)  a number of studies 

have only classification accuracy for the entire sample rather than separately for each group.  



High overall classification can be driven by very good classification performance for one group 

(either patients for controls) but poor performance for another, which would limit the clinical 

utility of such an approach.  Many of the early classification studies were conducted in very 

small samples such that their generalizability would be questionable and as such must be 

considered proof of concept.  There are a number of ways in which classification methodology 

can be biased, such as by selecting the features forming the basis of classification based upon 

the entire data set being classified or failing to keep test and training set separate during all 

steps of the analysis.  These problems are present to some degree in a number of the published 

studies using classification methodology to distinguish schizophrenia patients from other 

groups.  

The review by  Demirci et al (6) stresses the importance of large, well characterized and 

described sample sizes, multi-site data sets, and unbiased use of classification methods along 

with detailed reporting of results in future classification studies using imaging data in 

schizophrenia patients.   

 
In addition to  differentiating patients from controls, efforts have been made to extend this 

approach to the important area of risk prediction.  Risk syndromes for psychotic disorders, 

based upon clinical assessment techniques that detect the presence of sub-threshold 

symptoms[9] have been shown to be reliably applied in research settings across the world and 

predictive of transition to psychosis in the 20-40% range.  This relatively low positive and 

negative predictive value limits the utility of this approach for guiding treatment. A number of 

research groups have sought to identity structural and functional changes in the brain in the 

risk state and to evaluate the predictive value of these findings for clinical and functional 



outcomes.  The results of these studies has been quite variable,  For example one of the leading 

groups in this area reported the presence of reduced cortical gray matter in prefrontal cortex 

and the temporal lobes in at risk individuals who later made the transition to psychosis while 

medial temporal lobe abnormalities accompanied the emergence of psychotic symptoms[10].  

A more recent paper from the same group, using different analytic methods, reported the 

opposite finding, with reduced prefrontal gray matter being related to the risk syndrome per se 

while reduced medial temporal lobe gray matter was related to transition.  The latter study had 

one of the larger samples reported to date but clearly additional well powered studies and 

meta analyses will be needed to clarify the relationship between changes in gray matter and 

psychosis risk in the clinical high risk syndrome. To date one study has reported the use of 

pattern classification analysis based upon structural MRI data to differentiate high-risk subjects 

from controls as well as those who later transition to psychosis versus those who do not.  In this 

single study the classification success rate was over 80% for each group and also for a second 

independent healthy control group.  Further replication in an independent at risk group will be 

needed to establish the reliability and generalizability of this potentially promising result[11]. 

 

Two final points related to the use of structural and functional MRI data for classification should 

be made.  The first is that there is little standardization of either the acquisition or analysis 

methods and for this approach to have a clinical impact the field would need to develop 

consensus on this.  More fundamentally, the validation of classification methods requires a gold 

standard, and for mental disorders in general and schizophrenia in particular this is a tall order.  

DSM schizophrenia itself is clearly a heterogeneous disorder that has phenotypic overlap at the 



behavioral level as well as in brain structure and possible function and so it may be unrealistic 

to achieve a consistently high level of classification in clinical practice. 

 

In summary considerable effort is currently being invested in using modern statistical and 

computational tools to utilize structural and functional MRI for diagnostic purposes in patients 

with schizophrenia and related disorders.  This approach has yielded some promising results 

but also methodological caution that seems largely addressable as more rigorous studies are 

performed on a much larger scale than has been typical to date.  While there is reason to be 

hopeful that these methods will eventually yield generalizable and replicable results that will 

permit their application in clinical practice at this time classification analyses remain a research 

tool only. 
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Section IV: Imaging Biomarkers Associated with Cognitive Decline 
Jonathan McConathy, M.D. and Yvette I. Sheline, M.D. 
Introduction 
In the past decade there has been a proliferation of neuroimaging studies examining cognitive 
decline in the elderly. Many of these studies have been small with small numbers of enrollees. 
It is becoming increasingly important to determine which studies and methods have achieved 
sufficient sensitivity and specificity that they can guide diagnostic or therapeutic decisions. The 
major focus of molecular and structural imaging for dementia has been on Alzheimer-type 
dementia (AD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). These 
three types of dementia differ in terms of presentation, prognosis, etiology and response to 
therapeutics, although clinical overlap is not uncommon (1-5). We will highlight those studies 
with sufficient power to make meaningful conclusions concerning the role of imaging 
biomarkers in cognitive decline and dementia.  
Traditionally, the clinical work up of dementia has focused on clinical assessment, 
neuropsychological testing, and exclusion of other etiologies. The National Institutes of Aging 
(NIA) and the Alzheimer’s Association have issued new diagnostic criteria for AD and mild 
cognitive impairment (MCI) that build upon the 1984 NINDCS/ARDRA guidelines and now 
suggest that the use of biomarkers and neuroimaging can enhance diagnostic confidence (3, 6).  
Specific definitions for stages of preclinical AD were introduced as well (7).  Preclinical AD Stage 
I was defined as asymptomatic cerebral amyloidosis (the presence of amyloid on positron 
emission tomography (PET) scan or lumbar puncture (LP).  Stage II was defined as Stage I plus 
downstream neurodegeneration (the presence of elevated tau on LP, abnormal fluor-
deoxyglucose [FDG[ metabolism on PET scan or abnormal volumetric loss on structural 
magnetic resonance imaging [MRI] scan). Stage III was defined as Stage II with the addition of 
subtle cognitive decline (7). An important concept introduced in these guidelines is the AD 
pathophysiological process (e.g. -amyloid deposition in the brain) which can be observed in 
some cognitively normal individuals and is thought to represent preclinical disease in this group 
of people. The AD pathophysiologic process is distinct from AD dementia which requires 
objective evidence of cognitive deficits established through clinical assessment. Autopsy studies 
have demonstrated that the accuracy of clinical diagnosis for AD is approximately 80% (8-9). In 
addition to limitation in accurate diagnosis, reliance on clinical assessment alone may not be 
optimal for clinical trials for therapies that slow or prevent the progression of dementia 
because some of the preclinical AD pathophysiological processes appear to precede clinical 
manifestations of dementia by many years (10-11).  Biomarkers for the AD pathophysiological 
process could be used to select participants in clinical trials as well as to monitor response to 
therapies. It is important to note that these recent guidelines issued by the NIA and Alzheimer’s 
Association restrict the application of imaging and CSF biomarkers to research applications and 
do not include these biomarkers in their clinical diagnostic criteria.  Of note, these guidelines 



were published prior to the FDA approval of PET tracers for amyloid imaging in adults with 
cognitive impairment. 
 
Structural Biomarkers 
Very mild Alzheimer’s disease (AD) or mild cognitive impairment (MCI) are characterized by 
magnetic resonance imaging (MRI) volumetric decreases in medial temporal lobe structures 
including the hippocampus (12) where hippocampal volume is correlated with beta-amyloid 
(A-associated memory decline (13-14).  Subjects with MCI who show abnormalities in MRI 
and/or CSF biomarkers are at greater risk for cognitive decline and progression to AD than 
subjects without these abnormalities(15).  However, the cross-sectional sensitivity and 
specificity of volumetric differences compared with controls has not been demonstrated.  At 
this time, therefore, structural MRI alone cannot be used alone to diagnose clinical dementia.  
In contrast, the sensitivity for detecting within-subject changes in structure is quite high.  In one 
study, predictive prognosis of MR images obtained at one time point versus combining single-
time-point measures with 1 year change measures were compared.  To determine the value of 
including measures of longitudinal change in addition to the atrophy measures from a single-
time-point MR imaging examination, individualized risk estimates were derived from the 
atrophy scores for thickness and volume measures calculated at the 1-year follow-up MR exam.  
Using the risk based on the atrophy progression scores, the discrimination improved 
significantly in the ability to predict conversion to AD, relative to predictive ability of using 
single-time-point measures (16). A study which examined subregional neuroanatomical 
volumetric change as a biomarker for AD to quantify the comparative sensitivity for detection 
of longitudinal atrophy changes, found that the regions with most sensitivity were entorhinal 
cortex and inferior temporal cortex (17). This could potentially provide a sensitive method to 
detect within subject change and potentially enough power to detect treatment induced 
change.  For example, in prospective therapeutic trials, the number of intent-to-treat subjects 
necessary to detect differences in trajectory as a function of an intervention can be estimated 
(17). In addition to stand-alone prediction of AD, MRI has been used to augment CSF 
biomarkers. In MCI subjects who were abnormal on both CSF and MRI measures there was a 4 
times higher risk to progress to AD within less than 2 years than those who were abnormal on 
only one of these measures (18-19).  A recent study using the NIA-AA definition of preclinical 
AD found that in a one year followup study the rates were significantly different across the 
stages (20).  The rate in stage 0 was 5%, Stage I (amyloidosis only) was 11%, Stage II (including 
structural MRI abnormalities) was 21% and Stage III, with the addition of cognitive change was 
43% (20). Thus, adding structural MRI to amyloid alone improved the prediction of progression.  
On the other hand, another study found that the best predictors of progression to AD, such as 
entorhinal thickness or trail making test B was comparable to any combination of predictors 
(21). 



PET and SPECT Biomarkers 
 
Molecular imaging uses tracers whose in vivo uptake patterns and kinetics indicate and quantify 
the presence or activity of specific biochemical processes including receptors, transporters, 
enzymes and metabolic pathways. Currently, positron emission tomography (PET) and single 
photon emission computed tomography (SPECT) which use radiolabeled tracers are the primary 
molecular imaging techniques used for imaging in dementia in humans. PET has higher spatial 
and temporal resolution and is more easily quantified than SPECT. There has been a great deal 
of work of the past 3 decades using PET and SPECT for human neuroimaging clinically and in the 
research setting.   
 
Molecular imaging has established utility for neuroimaging in dementia, particularly AD (22-23). 
The glucose analogue 2-[18F]fluoro-2-deoxy-D-glucose (FDG), several 11C- and 18F-labeled tracers 
that bind A neuritic plaques, the SPECT perfusion agents 99mTc-labeled ethyl L,L-cysteinate 
dimer (ECD) and hexamethylpropyleneamine oxime (HMPAO), and the dopamine transporter 
ligand FPCIT will be discussed in this section as biomarkers for specific dementias. [18F]FDG and 
SPECT perfusion imaging have been evaluated in each of these types of dementia, while 
Aimaging has focused primarily on AD. FPCIT has been used primarily to differentiate 
dementia with Lewy bodies (DLB) from AD.  
 
There are a number of other PET and SPECT tracers that have potential applications in 
dementia. Tracers targeting nicotinic and cholingergic acetylcholine receptors, 
acetylcholinesterase, dopamine D1 and D2 receptors, serotonin 5-HT1A and 5-HT2A receptors, 
vesicular monoamine transporters (VMAT), and the peripheral benzodiazepine receptors in 
activated microglia have all shown differences between subjects with dementia compared to 
controls (23-25). These tracers represent promising research tools, but there is not enough data 
to support their use as imaging biomarkers for dementia at this time. 
 
Pathologic analysis of brain tissue obtained at autopsy is considered the best reference 
standard for establishing the sensitivity, specificity and accuracy of biomarkers in dementia. 
There are several considerations unique to PET and SPECT biomarkers for dementia. The 
methods used for image acquisition, reconstruction and analysis can affect the diagnostic 
performance of these imaging modalities, particularly when quantitative data analysis is 
performed. Because of spatial resolution limitations of PET and SPECT, brain atrophy can 
artifactually decrease measured tracer uptake and can be a potential confound to visual and 
quantitative analysis. Correction for atrophy can be performed based on anatomic imaging with 
CT or MRI. 
  



Alzheimer’s disease (AD) 
 
1) [18F]FDG 
 
[18F]FDG-PET is the most widely used PET tracer in the United States for both oncologic and 
dementia imaging, and the regional uptake and retention of the PET tracer FDG in the brain can 
provide a quantitative measure of brain glucose metabolism. Numerous studies have 
demonstrated progressively decreasing brain uptake of FDG in AD patients over time, 
predominantly in the parietotemporal, frontal and posterior cingulate cortices which is thought 
to reflect neuronal injury and loss. Currently, FDG-PET studies are reimbursed by the Centers 
for Medicare and Medicaid Services (CMS) for differentiating suspected AD from FTD. The 
clinical interpretation of FDG-PET studies for the diagnosis of dementia can be performed by 
qualitative visual analysis of the relative levels of FDG uptake in relevant regions of the brain. 
Quantitative analysis of regional FDG uptake can also be performed through comparison with 
normative databases, and there is data suggesting that this type of analysis can improve 
diagnostic accuracy, particularly for less experienced interpreters (26-27).  
 
The sensitivity of FDG-PET for the diagnosis of early AD is approximately 90% although the 
specificity for distinguishing AD from other types of dementia is lower (71-73%) in studies that 
used autopsy confirmation as the reference standard (27-28). There is also data supporting the 
use of FDG-PET to predict which healthy individuals will develop mild cognitive impairment 
(MCI) and which individuals with MCI will progress to clinical AD (29-30). Recent studies suggest 
that FDG may be a better marker for progressive cognitive decline compared to amyloid 
imaging and CSF measures of A levels (31). However, there is also growing evidence that 
abnormal brain accumulation of tracers targeting A occurs before changes in FDG uptake (10, 
32). 
 
A relatively small number of studies have examined the ability of FDG to discriminate patients 
with AD from those with FTD or DLB. In FTD, the typical pattern of FDG hypometabolism 
predominantly involves the anterior aspects of the frontal and temporal lobes, often 
asymmetrically. In studies of subjects with AD and FTD, high specificities have been reported 
(93-98%) with more variable sensitivities (53-95%) (33-35). Some of this variation is likely due to 
differences in patient population, methods and reference standard (pathologic confirmation 
versus clinical diagnosis). In a study of 31 patients with autopsy-confirmed AD and 14 with FTD, 
FDG-PET was more accurate than clinical assessment and differentiated AD from FTD with a 
specificity of 98% and sensitivity of 86% (34). The pattern of glucose hypometabolism is similar 
in AD and DLB, but occipital hypometabolism typically is present in DLB but not in AD which can 
be used to distinguish these dementias. In studies of subjects with AD and DLB, the reported 



sensitivities and specificities are variable with ranges of values of 75 -83% and 72-93%, 
respectively (36) (37).  
 
2) Amyloid imaging 
 
Abnormal homeostasis and aggregation of beta-amyloid (A) is a hallmark of the pathologic 
diagnosis of AD and is thought to play a central role in the pathogenesis of AD (38-39). The 
deposition of A in the brain appears to precede the development of AD by up to 10-15 years 
(11, 40).  A number of small molecule PET and SPECT tracers suitable for measuring A in the 
living human brain have been developed over the past decade. One of the first amyloid imaging 
agent developed was the PET tracer [11C]Pittsburgh compound B (PiB), and this tracer has been 
used extensively for research in subjects with AD and other dementias. More recently, several 
18F-labeled amyloid imaging agents have been developed and evaluated for A imaging 
including florbetapir (AV-45), (41) flutemetamol, (42) florbetaben,(43), FDDNP, (44) and 
AZD4694 (45). These tracers are better suited to routine clinical use due to the longer half-life 
of F-18 compared to C-11 (110 min vs. 20 min). These tracers are similar in terms of mechanism 
of action by binding to the fibrillary form of the A protein that occurs in neuritic amyloid 
plaques (46).  
 
In April 2012, [18F]florbetapir was approved by the FDA for detecting abnormally increased -
amyloid deposition in the brain in patients with cognitive decline. Comparison with autopsy 
results demonstrated that positive florbetapir-PET studies corresponded to moderate or 
frequent A plaques on neuropathology. Both flutemetamol and florbetaben are currently in 
late phase clinical trials and appear to have similar diagnostic properties based on the available 
published data (47-48). With this class of tracers moving from the research to the clinical 
setting, their proper use will require referring health care providers and imaging physicians to 
understand which patient populations will benefit from -amyloid imaging as well as the 
implications of both positive and negative imaging studies. For florbetapir, a negative study (no 
abnormally increased cortical tracer uptake) is inconsistent with the diagnosis of dementia due 
to AD but does not exclude other dementias or neurological disorders that are not associated 
with -amyloid pathology. In contrast, a positive study with florbetapir indicates the presence 
of abnormal levels of amyloid but does not by itself establish the diagnosis of AD dementia. As 
with PiB, positive florbetapir PET studies can occur in 20-30% of cognitively normal older 
people, (49) and the significance of this finding is an area of active research. Additionally, A 
deposition has been reported in DLB, and AD pathology can potentially coexist with 
neurological conditions causing cognitive decline. Because abnormal A PET and CSF studies are 
currently the earliest known phenotypic marker of the AD pathophysiological process and 



appear to precede clinically detectable cognitive decline, these agents may be particularly 
useful if disease-modifying therapies become available.  
 
The most rigorous published evaluations of the correlation between imaging findings and 
pathologic confirmation of AD at autopsy are currently available for PiB and florbetapir. Small 
studies comparing the brain uptake of PiB and A plaques on histopathologic analysis have 
yielded mixed results, and sensitivity and specificity measurements cannot be provided based 
on this limited data (50-51).  A recent study using florbetapir demonstrated 96% qualitative 
agreement of PET imaging with A burden on histopathologic analysis in a group of 29 subjects 
(15 meeting pathologic criteria for AD, 14 free of A pathology) (52). In the same study, 74 
healthy controls less than 50 years of age all were negative for A based on florbetapir-PET. 
One limitation of this study was the use of consensus reads between 3 nuclear medicine 
physicians with individual readers having more variable performance. The data reported by the 
FDA in the prescribing information document for florbetapir includes data from 59 subjects who 
had autopsies performed after florbetapir-PET, and the majority reader method provided 
sensitivity of 92% and specificity of 100%, although the sensitivity for individual readers ranged 
from 69-95% (53). 
 
3) Perfusion imaging 
 
The use of lipophilic 99mTc-labeled complexes that readily cross the blood brain barrier (BBB) 
with subsequent trapping are well-established radiopharmaceuticals for measuring brain 
perfusion (54).  Regional decreases in brain perfusion measured with the ECD and HMPAO are 
similar to the regional decreases in glucose metabolism in AD, and regional cerebral blood flow 
(rCBF) has been proposed as method for diagnosing AD (55). In general, direct comparisons 
between FDG-PET and rCBF measured with SPECT have shown higher sensitivity and specificity 
with FDG-PET (56). In the past, the large differential in cost and availability between PET and 
SPECT cameras and radiopharmaceuticals greatly favored the use of SPECT. However, the 
recent widespread adoption of FDG-PET for oncologic imaging has decreased this difference 
significantly. 
 
Frontotemporal dementia (FTD) 
 
1) [18F]FDG-PET 
 
[18F]FDG has shown utility in distinguishing AD from FTD based on different patterns of 
decreased regional brain glucose metabolism. Unlike AD, the brain regions with the most 
marked relative decreased in [18F]FDG uptake are in the frontal and/or anterior temporal 



cortices in FTD. Overall, studies of subjects with AD and FTD, high specificities have been 
reported (93-98%) with more variable sensitivities (53-95%) (33-35). The largest study assessing 
the ability of [18F]FDG to distinguish AD (n=31) from FTD (n=14) with pathologic confirmation 
found sensitivity of 86% and specificity of 97% (34).  
 
2) SPECT perfusion 
 
Measurement of rCBF with SPECT perfusion agents has been used to distinguish FTD from AD. 
In a study using 99mTc-labeled HMPAO in subjects with pathologically confirmed FTD (n=25) and 
AD (n=31), reduction of frontal rCBF permitted diagnosis of FTD with a sensitivity of 80% and 
specificity of 65% (57). When bilateral frontal reduced rCBF was present, the sensitivity was 
unchanged but the specificity increased to 81%. However, diagnosis based on SPECT alone was 
less accurate than clinical diagnosis.  
 
3) Amyloid agents 
 
There is currently insufficient data to define the role of amyloid imaging agents as a biomarker 
to distinguish FTD from AD, although the different pathophysiologies and several small studies 
suggest that A imaging may be useful to distinguish FTD from AD. Together, these studies 
demonstrate that 11-25% of patients with clinically diagnosed FTD have abnormally increased 
cortical A deposition as measured with  [11C]PIB or [18F]fluorbetaben (58-60). None of these 
studies had autopsy confirmation, and the significance of the A deposition in the FTD subjects 
is unclear. One hypothesis is the small percentage of patients with FTD and abnormal cortical 
A deposition may be in part explained by co-morbid FTD and AD in the same patient. 
 
Dementia with Lewy bodies (DLB) 
 
1) [18F]FDG-PET 
 
[18F]FDG has shown utility in distinguishing AD from DLB based on different patterns of 
decreased regional brain glucose metabolism (61-62). The pattern of decreased brain [18F]FDG 
uptake in DLB is similar to AD with the exception of involvement of occipital cortex, particularly 
the primary visual cortex, in DLB but not AD. In studies of subjects with AD and DLB, the 
reported sensitivities and specificities are variable with ranges of values of 75 -83% and 72-93%, 
respectively (36) (37, 61). In a study combining both clinical and histopathologic confirmation of 
diagnosis, [18F]FDG-PET was found to have a 90% sensitivity and 80% specificity for 
distinguishing AD from DLB (61). 
 



2) SPECT perfusion 
 
Studies examining the ability of 99mTc-labeled ECD and HMPAO to distinguish AD from DLB have 
shown similar sensitivity and specificity as [18F]FDG-PET (63). The regional pattern of decreased 
brain perfusion is similar to the pattern of glucose metabolism observed with [18F]FDG. Some 
studies have reported 85% sensitivity and 85% specificity for this indication,(64) although other 
groups have found substantially lower values (sensitivity of 65%, specificity of 87%) (65). 
Additionally, these studies used clinical diagnosis as the reference standard and were not 
histopathologically confirmed.  
 
3) Dopamine transporter (DAT) imaging 
 
The SPECT agent [123I]FPCIT (ioflupane) has been used to discriminated DLB from other 
dementias based on the loss of dopaminergic neurons which in turn leads to decreased DAT 
density in the striatum. This agent has also been used to study the loss of dopaminergic 
neurons that occurs in Parkinson’s disease and related syndromes and is clinically approved for 
clinical use in Europe and the U.S. to distinguish Parkinsonian syndromes from essential tremor 
(66). A 2007 multicenter trial in Europe with 326 subjects demonstrated that FPCIT has a 
sensitivity of 78% and specificity of 90% for distinguishing DLB from other dementias, primarily 
AD, using clinical diagnosis as the reference standard (67). A smaller retrospective study (n=44)  
demonstrated lower sensitivity (63%) but higher specificity (100%) based on consensus 
diagnosis after 12 month follow up as the reference standard (68). A small prospective study 
that included 20 patients with dementia and pathologic analysis at autopsy, FPCIT was 88% 
specific and 100% specific for differentiating DLB from other dementias compared to lower 
values of 75% and 44%, respectively, based on initial clinical diagnosis (69). 
 
4) Amyloid agents 
 
There is insufficient data to use amyloid imaging agents to distinguish DLB from AD. The 
available data suggests that A deposition occurs frequently in DLB and may correlate with 
cognitive deficits (70-71). 
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Section V: Progress Toward Diagnostic Imaging Biomarkers for Substance Use Disorders2 
 
The heritability of substance use disorders, including alcoholism, is estimated at 50% [1], 
suggesting a strong biological basis for their development, that interacts with the effects of the 
shared environment. In addition, there are known neurobiological effects of drugs of abuse, 
some of which are related to their reinforcing effects, tolerance development and the 
formation of the addiction process, that are, at least in some part, common across substances 
of abuse. Neurodegenerative processes also appear to take place upon prolonged abuse, with a 
number of neuropsychological consequences, including co-morbidity with other psychiatric and 
neurological processes, making the parsing out of mechanisms associated with addiction 
processes particularly challenging.  
The vast majority of studies have examined differences in neuroimaging data (structural 
measures, connectivity, function, neurotransmission) between addicted samples and controls, 
and in some cases, have studied the relationship between those measures and variables related 
to the severity of the addiction, craving, withdrawal symptoms and treatment effectiveness. 
The extant data on structural MRI, functional MRI (fMRI), magnetic resonance spectroscopy 
(MRS), functional and neurochemical positron emission tomography (PET) and single-photon 
emission tomography (SPECT) are reviewed here with specific examples. Neuroimaging and 
related surrogate markers have the potential of defining addiction neurobiology, effects of 
drugs of abuse on various measures, and their relationship with particular individual 
characteristics and responses to treatment. Biological markers related to risk/vulnerability are 
of particular importance as they address the potential for prevention and early intervention. 
The latter has been highlighted by the recent investment in acquisition of longitudinal 
phenotypic and neuroimaging data in late childhood and early adolescence by the National 
Institutes of Health in the Adolescent Brain Cognitive Development (ABCD) multicenter study. 
The following paragraphs summarize some of the existing data on neuroimaging biomarkers of 
the addictions. 
 
Alcohol:  Atrophic changes in gray matter as well as white matter damage have been amply 
documented in chronic alcoholics, involving frontal [2], cerebellar [3] and hippocampal 
structures ([4-6]), presumably accounting for neuropsychological deficits, and reflecting the 
neurotoxic effects of chronic alcohol consumption. Reductions in gray matter volume in chronic 
alcoholics and improvements in those measures after prolonged abstinence have also been 
observed for some structures related to decision making and motivated behavior (i.e., 
dorsolateral prefrontal cortex, insular cortex, nucleus accumbens, amygdala), with 
corresponding improvements in neuropsychological measures (e.g., executive functions) [7]. 
Reductions in white matter connectivity using diffusion tensor imaging (DTI) have been 
documented in the fornix and cingulum, confirming the effects of alcoholism on white matter 
tract integrity [8]. An impairment of abstinent alcoholics in performing an incentive conflict task 
that examines conflict resolution and the regulation of behavioral responses to potential gains 
and losses has also been described. Areas involved in these processes showed reductions in 
gray matter volume among the alcoholics that were more profound in those individuals 
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undergoing multiple detoxifications, suggesting that multiple withdrawals, and not just alcohol 
consumption, may also have effects on neuronal integrity and potentially the function of those 
regions [9]. In a small sample of patients with either uncomplicated alcoholism or Korsakoff’s 
syndrome it was observed that microstructural anomalies in the white matter in the Papez 
circuit were associated with the more severe forms of alcoholism and with memory 
dysfunction, potentially providing information as to predisposition to cognitive decline in 
chronic alcoholics [10]. 
 
Reductions in markers of neuronal integrity as measured by MRS of the frontal lobes have been 
consistently found in alcoholism, with reductions in N-acetylaspartate  (NAA) and 
glutamate/glutamine (Glu) content in heavy drinkers [11, 12]. These are effects that also appear 
in other substance use disorders, such as methamphetamine and nicotine dependence [13], 
likely reflecting the neurotoxic effects of chronic substance abuse.   
 
A number of studies have examined brain regions involved in cue-reactivity with functional MRI 
(fMRI). Alcohol-related cues are associated with the activation of the prefrontal cortex, striatum 
and thalamus in alcoholic use disordered volunteers, compared to healthy controls [14, 15]. A 
pilot study examined the level of activation in these regions among relapsers vs. non-relapsers, 
showing that alcohol intake over a 3-month follow-up period was associated with greater 
baseline cue-induced reactivity in the anterior cingulate, medial prefrontal cortex and striatum 
[16]. These findings, together with evidence that naltrexone reduces cue-induced activation in 
the ventral striatum [17], led to the development of a multicenter study for the stratification of 
patients into different treatments based on cue-induced reactivity using fMRI measures as one 
of the predictors [18]. Its results showed that increases in cue-induced reactivity of the ventral 
striatum were associated with better treatment responses to naltrexone, suggesting the utility 
of fMRI for the prediction of treatment responses in alcoholism [19]. Along similar lines, and 
this time utilizing an impulsiveness task, it was observed that monozygotic twins discordant for 
alcohol use disorder showed hypermethylation of the 3’-protein-phosphate-1G (PPM1G) gene 
locus, and effect linked to the fMRI signal responses in the right subthalamic nucleus, part of 
the output of the ventral striatum through the indirect striatopallidal pathway, a network 
centrally involved in motivational mechanisms and reward response integration [20]. 
 
Neurochemical imaging with PET and radiotracers have reported reductions in dopamine D2/3 
receptor availability in the striatum of detoxified alcoholics in most studies (reviewed in [21]). In 
the ventral striatum these have been found to correlate with both alcohol craving and cue-
induced activation of the medial prefrontal cortex and anterior cingulate in parallel fMRI 
experiments [22]. As reviewed below for other substances of abuse, and in particular 
psychostimulants, reductions in D2/3 receptor availability is a consistent finding in the drug 
abuse literature, likely to reflect the role of dopamine in the reinforcement of both natural and 
drug-associated rewards. Chronic alcohol use has been additionally associated with reductions 
in presynaptic dopamine function in the ventral striatum and putamen, as measured by 
amphetamine- and methylphenidate-induced dopamine release [23, 24]. In the latter study, 
dopamine release was further negatively associated with the metabolism of the orbitofrontal 
cortex in healthy controls but not alcoholics, suggesting a disruption of prefrontal-ventral basal 



ganglia regulatory processes in alcoholism. Less consistent, mixed results have been reported 
for other measures of presynaptic dopamine or serotonergic function, such as the availability of 
dopamine transporters (DAT) [25, 26], serotonin transporters (SERT) [27-29] or dopamine 
uptake as measured by [18F]fluorodopa [30, 31]. Similar conflicting results have been reported 
for other targets of alcohol effects, such as the opioid system and µ-opioid receptors [32, 33], 
although relationships with alcohol craving were reported in both studies, and the GABAA-
benzodiazepine receptor site [34, 35]. Methodological differences between studies (radiotracer 
selectivity, length of abstinence, co-morbidities with other substances, such as tobacco 
smoking) are likely to account for some of the lack of consistency across studies. 
 
A growing body of literature is also examining potential precursive factors that may underlie a 
predisposition for early alcohol and drug use among youth and adolescents “at risk”, such as 
those with high-levels of sensation seeking, family history of alcoholism, and the effects of early 
alcohol and drug involvement. A blunted nucleus accumbens response during reward 
anticipation has been found in young adults at risk for alcoholism based on family history [36], 
as well as in youth during an affective word processing task [37] and it has been suggested that 
a composite of impulsivity and negative affectivity may induce changes in reward response 
circuitry predisposing to the engagement in substance use behaviors [9]. Family history of 
alcoholism has also been associated with higher levels of dopamine D2/3 receptors in the basal 
ganglia of unaffected relatives in one study, suggesting that those elevations may represent a 
protective factor [38]. 
 
Opioids:  Heroin-dependent volunteers have shown diffuse reductions in gray matter volume in 
the prefrontal, cingulate cortex and supplementary motor cortex, as well as reductions in 
fractional anisotropy as measured with DTI in frontal regions, further associated with duration 
of heroin use [39, 40]. A very specific form of heroin abuse, the inhalation of heated heroin 
vapor, has been additionally related to the development of spongiform encephalopathy as 
diagnosed with structural MRI [41]. Using resting state connectivity measures and fMRI, 
alterations in functional connectivity, affecting prefrontal, cingulate, ventral basal ganglia and 
amygdala networks, have been reported in abstinent heroin-dependent volunteers, with the 
extent of those anomalies corresponding to the duration of heroin use [42-44]. Functional 
connectivity indexes of the caudate nucleus, an area linked to both substance use disorders and 
the formation of habitual behaviors, were also different between heroin-dependent volunteers 
that relapsed after treatment in comparison with non-relapsers, and further associated with 
craving ratings, suggesting the potential utility of these measures to predict treatment 
responses in this population [45]. Reductions in the capacity to engage brain regions involved in 
impulse control and inhibitory responses have also been reported, even after prolonged 
abstinence [46]. As with other drugs of abuse, the presentation of heroin-associated cues 
during fMRI has been shown to increase brain regional activity (prefrontal, temporal cortical 
regions and amygdala) in currently using as well as detoxified heroin-dependent volunteers, 
compared to non-abusing controls [47, 48]. In the latter study, a reduction in responses to 
neutral cues in the prefrontal cortex was additionally observed. Cue-induced brain regional 
activity in heroin-dependent volunteers is reduced after methadone treatment in the insular 
cortex, amygdala and hippocampal formation [49].  



 
Work examining structural and functional measures in prescription opioid-dependent 
individuals has shown selective reductions in the volume of the amygdala, as well as in DTI 
fractional anisotropy measures in amygdala-associated pathways. Reductions in the functional 
connectivity of the anterior insula, nucleus accumbens and amygdala were also observed, 
compared to that of controls, which were associated with duration of prescription opioid abuse 
[50]. Similarly to other drugs of abuse, opioid dependence has been associated with reductions 
in dopamine D2/3 receptors, further correlated with length of opioid and other drug use [51, 
52]. Increases in µ-opioid receptor availability have also been reported in a pilot study [53], 
potentially reflecting compensatory changes after prolong opioid agonist use, or the effects of 
detoxification.  
 
Psychostimulants:  In cocaine dependence, reductions in gray matter volume and density have 
been reported in cortical and subcortical structures when compared to abstainers and control 
samples, and have been associated with lifetime cocaine or duration of cocaine use (most 
recently in [54-56]. In one of these studies, the effects of comorbidity with alcohol abuse was 
also examined, and related to reductions in dorsolateral prefrontal cortex gray matter volume. 
Common genetic polymorphisms previously associated with the interaction of childhood 
maltreatment with the development of antisocial traits, low monoamine oxidase function 
MAO-A genes, were also found to interact with lifetime cocaine use to induce larger reductions 
in orbitofrontal gray matter [54]. In healthy samples, this polymorphism has been associated 
with reductions in gray matter volume in some subcortical structures (nucleus accumbens, 
anterior cingulate cortex), but increases in the orbitofrontal cortex [57]. Reductions in gray 
matter measures among psychostimulant-dependent samples have been related to 
performance on memory tests, reaction time [56], as well as with attentional control and 
compulsivity of use [55]. In the latter study, increases in caudate volume were also observed. 
While not directly examined in a longitudinal fashion, these data suggest that gray matter 
measures may undergo inverted U-shape curve changes that are likely to vary regionally in their 
progression, as increased consumption of this psychostimulant interacts with interindividual 
differences driven by genetic variation and potentially environmental influences. 
 
From a functional imaging perspective, and similar to what has been proposed in alcohol 
dependence, reductions in actual reward sensitivity, but increased sensitivity to the potential 
for rewards (e.g., expectation of drug reward acquisition) are thought to underlie the drive to 
consume psychostimulant drugs, and may also represent a precursive neurobiological 
mechanism that increases the possibility of early engagement in drug use. These processes are 
thought to take place through the interaction of cognitive regulatory regions (e.g., prefrontal 
cortical areas), with those involved in reward responding, such as the ventral striatum [58]. 
FMRI resting state data has shown reductions in the functional connectivity between the 
ventral tegmental area and ventral basal ganglia and thalamus, between the amygdala and the 
medial prefrontal cortex and between hippocampus and dorsomedial prefrontal cortex; the 
reductions in functional connectivity between the ventral tegmental area and ventral basal 
ganglia/thalamus were correlated with years of cocaine use. These data would be consistent 
with an effect of chronic cocaine on mesocorticolimbic circuits, but also represent an example 



of alterations at the level of top-down regulation between cortical and subcortical structures in 
cocaine dependence [59]. Another study, however, showed increased connectivity in 
perigenual anterior cingulate networks in cocaine-dependent volunteers, compared to controls. 
This increased strength of connectivity was further associated with poorer performance on 
delayed discounting and reversal learning tasks in the cocaine-dependent group (reflecting 
difficulties in delaying rewards and in adaptive learning) [60]. Increases in connectivity were 
also reported recently by another group and associated with impulsivity scores and cocaine use 
severity [61]. 
 
In chronic cocaine abusers, the literature on cue-elicited functional PET and fMRI effects has 
shown that cocaine-related cues activate the dorsolateral prefrontal, orbitofrontal, anterior and 
posterior cingulate cortices, amygdala, thalamus, insula, dorsal and ventral striatum to a 
greater extent in cocaine-dependent volunteers than in non-users [62-68]. During cognitive 
tasks, greater activation of brain regions involved in decision-making, conflict resolution 
(ventral prefrontal cortex, posterior cingulate cortex) has been positively associated with 
cocaine abstinence measures [69]. Conversely, greater regional activation during the 
presentation of drug cues, involving the sensory association cortex, motor cortex and posterior 
cingulate cortex were associated with poorer treatment effectiveness, measured as cocaine-
free urine samples [70]. Greater activation of the thalamus, caudate, amygdala and 
parahippocampal gyrus during monetary reward expectation in recently detoxified cocaine-
dependent volunteers have also been negatively correlated with treatment outcome measures, 
such as cocaine-negative urine toxicology, self-reported abstinence and treatment retention 
[71]. While preliminary, and hardly diagnostic in nature, these studies do seem to point to 
neuroimaging measures as potential biological markers in clinical trials to determine the 
predictability of outcomes in substance abusing samples, and potentially aid in treatment 
stratification.  
 
Because of the direct effects of cocaine on dopaminergic and in general aminergic 
neurotransmission, as well as secondary effects on other neurotransmitter systems, such as the 
endogenous opioid, a substantial volume of literature has examined neurochemical markers 
using PET and SPECT in cocaine-dependent volunteers. Consistent across studies, reductions in 
dopamine D2/3 receptor availability in vivo have been reported [72-75], that appear to persist 
long after detoxification, based on both human [73] and non-human primate studies [76]. 
These reductions have been further related to the pleasurable effects of cocaine [77, 78], but 
not to the likelihood of self-administration [72]. In addition, amphetamine and 
methylphenidate-induced release of dopamine have been found consistently reduced in the 
basal ganglia of cocaine-dependent volunteers, documenting a disruptive effect of this 
psychostimulant on dopaminergic neurotransmission, potentially driving further consumption 
and high frequencies of relapse upon detoxification and treatment [75, 79]. Drug-related cues 
have also been documented to increase dopamine release in the basal ganglia, correlating with 
craving for cocaine in addicted volunteers [80, 81]. Central to theories related to the reinforcing 
effects of psychostimulants, sensitization to the effects of cocaine has been shown in one study 
of healthy, non-addicted volunteers, whereby the repeated administration of amphetamine 
was associated with increases in dopamine release, an effect that was observed at two weeks 



and up to one year from the administration of three doses of amphetamine [82]. Effects of 
cocaine-dependence in recently detoxified addicts, with increases in availability, have been 
reported for DAT [83] and SERT [84], probably reflecting upregulatory changes after chronic 
blockade by cocaine, albeit their behavioral consequences are presently unknown. Increases in 
the availability of µ-opioid receptors in prefrontal, temporal cortex and amygdala have also 
been reported, and are consistent with the known interactions between dopaminergic and 
opioid systems in mesocorticolimbic regions. These have been related to craving for cocaine 
shortly after detoxification [85], shown to persist over months after cocaine-cessation, and 
additionally related to shorter time to relapse [86, 87]. 
 
The literature on the amphetamine-type psychostimulants, including methamphetamine and 
3,4-methylenedioxymethamphetamine (MDMA), is somewhat more limited in volume, and has 
emphasized the neurotoxic effects of these compounds. Amphetamine use has been associated 
with selective increases in the volume of basal ganglia structures [88, 89]. The enlargements 
observed in striatal structures have been ascribed to effects of psychostimulants on water 
content, inflammation, trophic neuromodulators and glial activation during neural injury, which 
after persistent damage may induce long-lasting reductions in cellular content and volumes 
[90]. These enlargements appeared against a more generalized background of reductions in 
gray matter volume in cortical regions, amygdala and the hippocampus, the latter correlating 
with impairments in verbal memory [91, 92], accentuating the effects of aging on those brain 
regions [93]. Reductions in gray matter volumes were most pronounced in experienced users, 
compared to low exposure users [94]. Consistent with those findings, reductions in high-energy 
metabolism in the prefrontal cortex have been described using [31P]-MRS in methamphetamine 
dependence [95]. As with cocaine, impaired prefrontal cortical function, as measured with 
glucose metabolism and PET [96] or fMRI during cognitive [97, 98] and emotion processing 
tasks [99, 100] has been observed in methamphetamine abusers, and has been related to 
impulsivity, aggression and cognitive dysfunction in these individuals. Treatment with 
modafinil, potentially through its dopaminergic effects, has been shown to improve 
performance during an associative reversal-learning task and induce greater increases in the 
functional responses of the insular cortex and prefrontal cortical regions (ventral prefrontal and 
anterior cingulate) in abstinent methamphetamine-dependent individuals, compared to a non-
abusing control sample [101]. This exemplifies the use of neuroimaging tools to determine not 
only the functional alterations associated with substance abuse, but also to objectively assess 
the effect of potential treatments. 
 
In a study examining predictors of treatment response, Paulus et al [102] utilized a decision-
making task to test the possibility that regional activation during this task predicted relapse of 
use. Greater activation of the right insula, posterior cingulate and middle temporal gyrus were 
predictive of better outcomes (longer time to relapse) during a one year follow-up period with 
94% sensitivity and 86% specificity. In parallel to findings in cocaine-dependent volunteers, 
methamphetamine abusers also show reductions in basal ganglia dopamine D2/3 receptor 
availability [103], which have been further associated with measures of impulsivity [104].  
  



Nicotine and Marijuana:  Tobacco use and nicotine dependence have been associated with 
reduced cortical gray matter volumes in chronic smokers, compared to non-smokers, 
potentiating the effects of aging on those structures [105, 106]. Reductions in gray matter have 
also been reported for subcortical structures, such as the thalamus and substantia nigra, 
compared to non-smokers [105, 106]. A large community-based sample reported smaller 
nucleus accumbens volume with greater lifetime use of cigarettes and an association between 
larger putamen volume with a lower age at smoking initiation [107]. Most studies on cannabis, 
however, have not found consistent reductions in structural measures or structural connectivity 
using DTI, albeit reductions in hippocampal, parahippocampal and amygdala gray matter 
volume have been reported in chronic cannabis users [108-110].  
 
Tobacco smoking after overnight abstinence has been associated with reductions in the activity 
of cognitive-emotional state processing regions, such as the anterior cingulate and 
hippocampus, further correlating with changes in cigarette craving after smoking [111]. 
Contrary to those results, dose-dependent increases in the activity of numerous cortical areas 
has been observed after intravenous nicotine after smoking freely [112], suggesting that 
withdrawal state, together with the direct and indirect effects of nicotine (and potentially its 
route of administration) on the human brain are important modifiers of neuronal responses. In 
this regard, differential effects of smoking abstinence and satiation on neural responses have 
also been reported during a probabilistic reward task [113]. 
 
Presentation of smoking cues has been shown to induce greater activation of prefrontal cortical 
areas, amygdala, and ventral and dorsal striatum in smokers compared to non-smokers [114-
118]. Compounds such as bupropion and varecicline, clinically utilized to reduce craving during 
smoking cessation have been additionally shown to reduce the activation of the ventral 
striatum, prefrontal and cingulate cortex during the presentation of smoking cues [119, 120]. 
Nicotine replacement has also been shown to increase brain regional activity and the 
correlations between alpha-EEG power and brain activity in cortical regions, an effect 
interpreted as reflecting the negative effects of nicotine withdrawal on attentional networks, 
with respective improvements after replacement [121, 122]. Effects of genetic variation have 
also been described, with variable number of tandem repeats in the DAT gene influencing brain 
regional responses to smoking cues. Individuals with 9-repeats had greater responses to 
smoking cues in ventral striatal and prefrontal regions, compared to smokers homozygous for 
the 10-repeat allele in the SLC6A3 gene [123]. Differences in responses to smoking cues in 
female smokers have also been reported for allelic variations in a single nucleotide 
polymorphism of the nicotinic acetylcholine receptor (nAChR) alpha-5 subunit [124]. 
 
Increases in the availability of beta-2 nAChR’s have been reported in smokers during acute 
abstinence using selective radiotracers [125], with reductions towards baseline after 2-3 
months of abstinence [126]. After smoking to satiation, high levels of receptor occupancy have 
been reported, in the 55 to 80% range [127]. 
Smoking has additionally been shown to acutely activate dopamine D2/3 neurotransmission in 
the ventral basal ganglia, as measured with PET and [11C]raclopride. These effects have been 
associated with reductions in craving for cigarettes [128], improved mood [129], the hedonic 



effect of smoking [130] and with the severity of nicotine addiction, as measured by the 
Fagerström scale of nicotine dependence [131]. The baseline level of DA D2/3 receptors of 
smokers has been found to correlate with Fagerström scores (albeit D2/3 receptor availability 
was not significantly different between smokers and non-smokers), while nicotine plasma levels 
were related to the magnitude of DA release after smoking in another study [132]. Reductions 
in D2/3 receptors have been reported in one report in the basal ganglia of heavy smokers using 
[18F]fallypride, with positive correlations with craving in the ventral basal ganglia, and negative 
relationships with craving in the anterior cingulate and inferior temporal cortex [133], as well as 
reductions in dopamine D1 receptors in the striatum of smokers, using [11C]SCH23390 and PET 
[134]. DA release in response to nicotine gum administration has also been found to be greater 
in smokers, compared to non-smokers, and proportional to the degree of nicotine dependence 
[135].  
 
Increases in the release of endogenous opioids acting on µ-opioid receptors during smoking 
nicotine-containing cigarettes, compared to denicotinized cigarettes have been described [131, 
136], as well as effects of the A118G µ-opioid receptor polymorphism on both baseline receptor 
availability and changes in µ-opioid receptor availability when smoking nicotine-containing 
cigarettes [137].  
 
This highlight of neuroimaging studies related to substance abuse reflects the complexity of the 
interactions between substances of abuse and their neurobiological substrates. There is 
evidence of neurotoxic and degenerative effects that to a fair extent, show overlap across 
substances, with no research examining differences that maybe diagnostic or predictive. In 
some cases, both anatomical and functional measures related to the effects of drugs of abuse 
have been associated with the severity of the addiction, however this type of relationship is not 
likely to change clinical practice. Similarly, an emerging literature is linking genetic variation 
with anatomical and functional effects of drugs of abuse. While the examination of relatively 
simple to obtain genetic markers with the circuitry where their interaction takes place in terms 
of the processes of addiction may provide a more comprehensive view of their potential use in 
practice, this is a field largely in its infancy, which will require larger scale, more definitive 
studies. It is also hampered by the very low predictive value of a given genetic variation for 
behavioral measures or at the individual level. Studies examining cue-induced increases in the 
activity of brain regions related to craving and the drive to consume drugs are starting to show 
some relationships with treatment responses and outcomes, as is the study of the functional 
relationships between frontal, regulatory regions with reward-responsive structures. At the 
present time, those studies are largely exploratory and in need of replication in naturalistic 
settings. Persistent changes in neurotransmitter receptors, particularly dopaminergic, are 
observed across substance of abuse, and being linked to addiction severity, the rewarding 
effects of drugs or even some of the personality factors that increase risk for addiction, such as 
impulsivity and reward vulnerability. These measures are typically obtained in highly specialized 
settings, and their translation to practice through less expensive, easier to obtain surrogate 
markers, is presently lacking. Last, a nascent literature is examining neurobiological measures 
that precede the onset of the addictions, providing an objective understanding of factors that 
contribute to resiliency and vulnerability to disease. These studies, while potentially helpful in 



prevention efforts, are still at a very early stage, and will require the definition of consistent 
relationships with addiction trajectories for them to be of use in clinical settings. While much 
has been learned about the effects of drugs of abuse on human neurobiology, and the potential 
of imaging to link neurobiological mechanisms with risk/vulnerability and treatment response, 
the present state of knowledge is far from being generalizable to clinical settings in a manner 
that would affect clinical decision-making for a given individual, and to this date remain 
exploratory and in need of replication. 
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Introduction: 

 Among the most important scientific trends in the past thirty years is the growing recognition 

that neuropsychiatric disorders are developmental disorders, with antecedents starting in childhood.  

Though in some respects, this “back-to-the-future” phenomenon takes us back to psychiatry’s founding, 

it differs from prior incarnations in an important aspect:  empirical data.  Starting with the Decade of the 

Brain initiative in the 1990s, and continuing with the present emphasis on translational research, studies 

have shown that psychiatric illness can start in childhood, and that patients have brain/behavior 

alterations from typically-developing controls (TDC) without psychopathology.  Magnetic resonance 

imaging (MRI) is the most common form of neuroimaging technique used in children to probe neural 

structure, function (aka functional MRI [fMRI]), and connectivity because it does not use radiation, 

unlike postitron emission tomography (PET) or computed tomography (CT) scans.  Neuroimaging is 

critically important to advance what we know about the neural mechanisms underlying childhood 

psychiatric disorders, holding the promise of future biomarkers that could augment clinical history for 

better, more specific, and earlier psychiatric diagnosis and treatment—akin to methods currently 

employed to fight cancer with greater and greater success.   

To qualify as a potential biomarker, a finding must not only be a quantitative difference 

between patients with a specific form of psychopathology compared to TDCs without psychopathology, 

but it also must be specific to that disorder compared to other psychiatric disorders.  At least three 

possible study designs can examine specificity:  (1) multi-group studies comparing patient group A to 

patient group B and TDCs without psychiatric illness; (2) machine learning studies that first train a 

computer to recognize group A based on certain neuroimaging parameters and then test the accuracy of 

these computer algorithms in correctly identifying if a particular person belongs to illness group A or 

not; (3) studies employing neuroimaging pre- and post-treatment to identify neural predictors of 

treatment response.  Of course, to be considered a biomarker, the finding would also have to be 

independently replicated.   

Broadly considering neuroimaging findings as potential biomarkers for child psychiatric 

disorders, two statements can be made at the present time.  First, neuroimaging research is leading to 



substantial progress in our understanding of the brain/behavior mechanisms underlying child psychiatric 

disorders.  Second, at present, no findings in any disorder would qualify as a neuroimaging biomarker for 

any psychiatric disorder in children or adolescents that could be used clinically to guide the diagnosis or 

treatment of any individual child.  While that is the goal, at present, anyone making such claims is, at 

best, misrepresenting themselves, and at worst taking advantage of a family’s need for hope. 

 This review seeks to summarize the state of the field with respect to neuroimaging research as 

potential biomarkers on three of the most important categories of child psychiatric disorders: (1) 

attention deficit/hyperactivity disorder, (2) mood and anxiety disorders (including major depressive 

disorder, bipolar disorder, disruptive mood dysregulation disorder, and generalized anxiety disorder), 

and (3) autism spectrum disorder (including the formerly separate diagnoses of autistic disorder and 

Asperger’s disorder).  

ATTENTION-DEFICIT/HYPERACTIVTY DISORDER (ADHD): 

ADHD is among the most common pediatric psychiatric disorders affecting approximately 3-10% 

of school-age children 1-3.  ADHD involves developmentally-inappropriate symptoms of inattention, 

hyperactivity and impulsivity, with resultant functional impairment, including academic 

underachievement and school failure, problems in social relations, emotion dysregulation, risk for 

antisocial behavior patterns including substance use, and increased levels of risky sexual behavior 4-7. 

Neuroimaging research has suggested that fronto-striatal alterations lie at the core of ADHD 8.  

One of the most interesting lines of research supporting this position comes from longitudinal structural 

imaging studies of children with ADHD as they progress through adolescence and young adulthood.  For 

example, compared to TDCs, children with ADHD have delays of around 2-5 years in the peak of cortical 

thickness and surface area, and these delays are greatest in the frontal, superior temporal and parietal 

regions 9,10.  Moreover, while TDCs have expansion of the ventral striatum’s (VS) surface area with age, 

children with ADHD have a progressive contraction 11.  Such reductions in children with ADHD compared 

to TDCs are also seen in dorsal striatal regions 11.  Taken together, longitudinal structural imaging studies 

have demonstrated that ADHD is unlikely the result of a static, unchanging lesion, but rather represents 

a developmental lag in neural development 9,12,13.  Present longitudinal neuroimaging studies are striving 

to delineate “growth curves” of brain development in typical children as they become adolescents and 

adults so as to define where ADHD youth diverge from this trajectory in a potentially clinically applicable 

way.  Nevertheless, there is no current neuroimaging biomarker for ADHD.  

ADHD: Structural MRI Studies 



As is true for many neuropsychiatric disorders, the vast majority of structural MRI studies in 

ADHD are cross-sectional studies that compare the volume of certain brain regions of interest (ROIs) in 

ADHD vs. TDC participants.  However, there are a growing number of studies that have begun to test the 

specificity of such alterations. 

Meta-analyses have consistently shown children with ADHD have decreased grey matter volume 

vs. TDCs, in basal ganglia structures including the putamen, caudate, and globus pallidus 14-16.  Nakao et 

al. found that increasing age and stimulant medication use were associated with increased basal ganglia 

volumes among ADHD youth (N=378), suggesting that stimulant medication treatment may “normalize” 

these structural anomalies 16.  Finally, in the first mega-analysis of structural data—re-analyzing original 

MRI data from participants aggregated from different studies (N=1713 ADHD, N=1529 TDC; age range 4-

63 years), Hoogman et al. found widespread subcortical reductions in participants with ADHD vs. TDCs in 

the basal ganglia (accumbens, caudate, and putamen) and limbic regions, including the amygdala and 

hippocampus, plus an overall reduction in total cerebral volume 17.  Of note, effect sizes were greatest in 

children vs. adults, corroborating abovementioned work showing ADHD may involve a delay in 

maturation, rather than a permanent “lesion”. 

 Multi-group imaging studies have evaluated the specificity of these neural alterations in ADHD 

by comparing them to other patient populations, such as children with autism spectrum disorders 

(ASDs) or bipolar disorder (BD).  For example, one study showed that medication naïve boys with ADHD 

(N=44) had volume reductions in total gray matter, total brain volume, and the right posterior 

cerebellum compared to medication naïve boys with ASD (N=19) or TDCs (N=33) 18.  In contrast, an 

earlier study found no ADHD-specific grey matter differences comparing ADHD, ASD, and TDC children 

(N=15 of each) highlighting the inconsistencies within the literature 19.  

To date, three structural MRI studies have compared children with ADHD to those with pediatric 

BD with, and without, comorbid ADHD 20-22.  For example, Lopez-Larson et al. compared children with 

ADHD (N=23), children with BD only (BD-ADHD, N=30), children with BD and comorbid ADHD 

(BD+ADHD, N=23) and TDCs (N=29) and found youth with ADHD had smaller caudate and putamen 

volumes relative to both BD groups and smaller amygdala volumes relative to all three other groups 20.  

Interestingly, another study comparing these four groups by Liu et al. showed that ADHD youth had 

specific significant reductions in total caudate and putamen volume relative to BD and TDCs whereas BD 

youth had specific significant increases of total caudate, putamen and globus pallidus relative to ADHD 

youth 21.  Results examining cortical thickness between these groups have shown that in the right lateral 



orbitofrontal cortex (OFC) and left subgenual cingulate the effect of BD and ADHD is independent rather 

than additive yielding a unique phenotypic signature for participants in the comorbid group (BD + ADHD 

group) 22. 

The last 15 years has witnessed considerable growth in the number of ADHD studies using 

machine learning to predict group membership,  For example, using six ROI measurements (i.e., length 

of the bilateral plana temporala, length of bilateral insula and width of the bilateral anterior frontal 

region), Semrud-Clikeman et al. achieved a 60% accuracy rate in predicting diagnosis for 6-16 years-old 

diagnosed with either ADHD combined type (N=10), dyslexia (N=10), or TDC (N=10) 23.  When including 

age and full-scale intelligence quotient (FSIQ), accuracy improved to 87%.  Similarly, two studies used 

caudate morphometry to predict group membership (i.e., ADHD or TDC).  First, Soliva et al. used the 

ratio of right caudate body volume (rCBV) to bilateral caudate body volume (rCBV/bCBV) to achieve 

94.74% specificity in the correct prediction of diagnosis, and an estimated negative predictive value of 

93.64% 24.  In a second study, Igual et al. examined a fully-automated segmentation of the caudate 

(using the internal and external capsules) in the classification of children with ADHD and TDCs (N=39 per 

group), achieving 72% accuracy, 86% specificity, and 95% negative predictive value 25.  While requiring 

replication in larger samples and groups without ADHD, these results using machine learning are quite 

promising. 

The neuroimaging/treatment literature in children with ADHD is extremely mixed, with most 

studies comparing medication naïve ADHD children vs. ADHD children on medications, rather than pre-

post designs involving the same participants) 26,27.  For example, Castellanos et al. found no differences 

in total cerebral volume between medication naïve children with ADHD and those taking medication 13.  

Similarly, ROI-based studies have found no volumetric differences in the anterior cingulate cortex (ACC) 
28, corpus callosum 29, caudate 30,31, putamen 31, or globus pallidus 31 between children with ADHD taking 

medication vs. others who are medication naïve.  Moreover, in Hoogman’s abovementioned volumetric 

mega-analysis, among those ADHD participants for whom stimulant medication history was available 

(42%; N=719), there was no volumetric differences in any structures between ADHD participants with a 

history of stimulant medication use (82%), those who were stimulant naïve (11%), and TDCs 17. 

In contrast to these studies suggesting that ADHD medications do not affect brain volume, other 

studies do support that possibility—suggesting that ADHD stimulant medications provide compensatory 

increases in key ROIs.  For example, Ivanov et al. found larger regional volumes in the left cerebellar 

surface in children with ADHD taking stimulant medication (N=31) vs. those who were stimulant naïve 



(N=15), with duration of stimulant treatment positively correlated with cerebellar volumes suggesting 

compensatory morphological changes associated with stimulant treatment 32.  Similarly, Villemonteix et 

al. showed that never medicated children with ADHD (N=33) exhibited decreased grey matter volume in 

the insula and middle temporal gyrus compared to stimulant-treated ADHD (N=20) and TDC (N=24), but 

no differences between stimulant-treated ADHD and TDC youth suggesting that stimulant medication 

may have a “normalization” effect on grey matter volume 33.  Furthermore, the authors found a positive 

association between duration of treatment and grey matter volume in the nucleus accumbens in 

medicated children with ADHD 33.  Also, in one of the few longitudinal studies examining medication 

effects, Shaw et al demonstrated an excessive rate of cortical thinning in the right motor strip, left 

middle/inferior frontal gyrus, and right parieto-occipital region in the never-medicated ADHD group 

(N=19) compared to those with a history of psychostimulant use (N=24) and TDCs (N=24) 34.   

 

ADHD:  Diffusion-Tenor Imaging (DTI) 

DTI is another form of structural MRI that tests the integrity and connectivity of cerebral white 

matter tracts via diffusion of water (the most common molecule in the human brain).  Common DTI 

measures include fractional anisotropy (FA), which reflects the relative diffusion of water and has values 

ranging from zero (isotropic [unrestricted] diffusion in all directions) to one (diffusion only along one 

axis, and restricted in all others) and mean diffusivity (MD) which measures the amount of water 

diffusion in any direction.  DTI studies of ADHD have focused on white matter tracts connecting PFC and 

striatal regions implicated in the etiology of ADHD 35,36.   

To date, only a few meta-analyses of ADHD DTI data have been conducted.  Earlier studies with 

smaller sample sizes have indicated altered FA, in widespread regions of the brain including most 

consistently the anterior corona radiata, forceps minor and internal capsule 37.  Consistent with this 

early review, Chen et al., found widespread white matter disruption in a large meta-analysis of 470 

individuals with ADHD and 477 TDCs. Specifically, individuals with ADHD had reduced FA in the splenium 

of the corpus callosum, right sagittal stratum, and left tapetum of the corpus callosum 38.  Further 

analyses showed that mean age of patients was negatively associated with reduced FA in the splenium 

of the corpus callosum suggesting that as age increases, FA decreases in this region for individuals with 

ADHD 38.  Unfortunately, this meta-analysis included both children and adults with ADHD given the small 

sample sizes of current DTI studies; therefore, few conclusions can be drawn about the specific nature of 

white matter integrity in children with ADHD. 



There are a few multi-group DTI studies comparing children with ADHD compared to children 

with other forms of psychopathology; however, these studies often present limited sample sizes and 

have not been replicated thus limiting the conclusions that can be drawn 39-43.  For example, Pavuluri et 

al. found ADHD youths (N=13) had significantly lower FA and regional fiber coherence index (i.e., a 

measure of the degree of coherence in a given fiber tract) in white matter fibers of the internal capsule 

connecting the neocortex and the brainstem compared to children with BD (N=13), and age- and IQ-

matched TDCs (N=15) 39.  Furthermore, both ADHD and BD youths had significantly lower FA in the 

anterior corona radiata compared to TDC 39.  These results suggest that ADHD may be characterized by 

more diffuse white matter changes while BD may result in more focal changes residing in the prefrontal 

anterior corona radiata and posterior cingulate. 

 In another recent example, Ameis et al. compared structural connectivity in youth with ADHD 

(N=31), ASD (N=71), obsessive-compulsive disorder (OCD; N=36) and TDCs (N=62) 42.  While participants 

with ADHD had reduced FA compared to those with OCD in the anterior thalamic radiation, genu of the 

corpus callosum, cortico-spinal tract, arcuate, and inferior-fronto-occipital fasciculi, FA reductions in the 

splenium was reduced in all of the patient groups vs. TDCs.  As in the prior study, the conclusion is that 

ADHD (and ASD) involves widespread white matter disruptions, in this case compared to those with OCD 

or TDCs. 

 In a third example, van Ewijk et al. examined the role of ODD in white matter connectivity in 

children with ADHD.  Compared to children with ADHD alone, those with comorbid ADHD+ODD had 

reduced FA in fronto-temporal tracts and parts of the basal ganglia 43.  These differences were 

independent of ADHD symptoms suggesting that ODD confers greater risk for white matter disruptions 

independent of ADHD 43.  

In the only DTI classification study to date, Yoncheva et al conducted a study including 82 

children with ADHD and 80 TDCs.  They found that mode of anisotropy, a measure of whether 

anisotropy is more planar (e.g., due to predominantly crossing fibers within a voxel) or more linear, in 

combination with ADHD rating scales resulted in a 94.12% positive predictive value, 96.67% sensitivity, 

and 94.59% specificity (Cohen’s d =0.68) 44.  Moreover, mode of anisotropy had substantially greater 

predictive power for diagnosis than any of the other DTI measures (area under the curve ROC = 0.70) 44. 

To date, no DTI studies of individuals with ADHD have examined white matter integrity before 

and after treatment.  However, one study examined the cumulative effect of stimulant medication in 

children with ADHD (ages 9-26 years old, N=172) vs. TDCs (N= 96).  Results showed that cumulative 



stimulant intake was negatively correlated with mean diffusivity (MD; a measure of the amount of water 

diffusion in any direction) in the orbitofrontal-striatal pathway such that higher cumulative stimulant 

intake was associated with lower MD in both hemispheres suggesting higher structural connectivity is 

associated with higher dose/longer duration of stimulant treatment 45.  

ADHD:  Functional MRI (fMRI) 

Aligning with the structural MRI literature, fMRI studies primarily show hypoactivation of fronto-

striatal regions 46.  Several ADHD fMRI meta-analyses have been conducted drawing on the increased 

power of larger, aggregated samples.  For example, Dickstein et al. who found a widespread hypoactivity 

in frontal regions (e.g., dorsolateral prefrontal cortex [dlPFC], inferior PFC, OFC, and ACC) and portions 

of the basal ganglia aggregating 16 studies of ADHD vs. TDC participants 47.  Cortese’s et al. conducted a 

larger meta-analysis of 55 fMRI studies (39 child, 16 adult) and similarly found overall ADHD-related 

hypoactivation in the bilateral frontal, right parietal and temporal, and bilateral putamen areas 46.  In 

contrast, they found ADHD-related hyperactivation in the right angular gyrus, middle occipital gyrus, 

posterior cingulate cortex and mid-cingulate cortex.  When limited to child-only studies, ADHD 

participants had hypoactivation in fronto-parietal and ventral attention networks 46.  Taken together, 

these results are consistent with theoretical models of ADHD which implicate disruption in fronto-

striatal networks 8. 

In addition to generalized meta-analyses of task-based fMRI, there have also been many reviews 

focused on fMRI neural activation during particular tasks tapping specific domains of function, such as 

response inhibition, sustained attention, and reward responsiveness.  For example, Hart et al.’s review 

of inhibition and attention fMRI studies (21 studies: 287 individuals with ADHD, 320 TDCs) showed that 

individuals with ADHD had hypoactivation in the right inferior frontal cortex, supplemental motor area, 

ACC, caudate, and thalamus compared to TDCs 48.  However, when age effects were examined, only 

basal ganglia and supplemental motor area abnormalities were present in children with ADHD vs. TDCs.  

For attentional control tasks (13 studies: 171 individuals with ADHD, 178 TDCs), results showed ADHD 

participants had significantly less activation than TDCs in the fronto-basal ganglia-parieto-cerebellar 

network responsible for visuospatial attention 48.  Finally, a meta-analysis of the ADHD reward 

processing literature showed that during reward anticipation, individuals ADHD have ventral striatal 

hypo-responsiveness vs. TDCs (Cohen’s d=0.48-0.58) 49.   

Against this background, several multi-group fMRI studies have examined the specificity of these 

alterations.  For instance, during a sustained attention task, boys with ADHD had reduced left dlPFC 



activation vs. boys with ASD or TDCs (N=20 in each of these three groups) 50.  Another study of sustained 

attention showed children with ADHD (N=18) had reduced activation in the ventrolateral PFC (vlPFC) 

and increased activation in the cerebellum vs. children with either with conduct disorder (CD, N=14) and 

TDCs (N=16) 51.  Interestingly, when reward was introduced into the task, children with CD had 

specifically OFC hypoactivation, suggesting that functional differentiation between attentional 

alterations in ADHD and reward in CD worthy of follow up. 

Studies of inhibitory control have shown reduced frontal lobe activation (e.g., dlPFC, vlPFC, right 

inferior PFC) in children with ADHD vs. children with either primary BD, CD, or OCD 52-54.  Moreover, in a 

large-scale meta-analysis of inhibition task activation in adults with ADHD (N=541, mean age = 19.6 

years) compared to adults with OCD (N= 287, mean age = 27.1 years) results showed two distinctly 

different patterns of activation such that adults with ADHD had reduced activation in the basal ganglia, 

especially the putamen, as well as the insula compared to adults with OCD and TDCs, while adults with 

OCD had increased activation in these regions relative to patients with ADHD and TDCs 55.  Further, 

adults with ADHD had disorder-specific reduced activation in the vlPFC.  The results of this analysis 

suggest that while inhibitory control deficits are present in both ADHD and OCD, the neural mechanisms 

of action underlying these deficits appear to have different neurobiological origins 55.  

A number of studies have probed neural response to emotional stimuli in children with ADHD 

compared to other forms of psychopathology.  Brotman et al. compared emotional face processing 

alterations in children ages 8-17 years with either:  (1) ADHD (N=18), (2) BD (N=43), (3) Severe mood 

dysregulation (SMD; N=29), or (4) TDC (N=37) 56.  ADHD participants had significantly increased neural 

activity in the left amygdala when rating their fear of emotionally neutral faces compared to BD, SMD, 

and TDC participants suggesting the involvement of the limbic system in the etiology of ADHD 56.  In an 

examination of the neural basis of cognitive control during emotional processing, results comparing 

children with ADHD vs. children with BD and TDCs showed an ADHD-specific under-activation in the 

vlPFC again suggesting the importance of cognitive control regions in the etiology of ADHD 57.  Finally, 

using an affective n-back task to compare children with ADHD vs. children with BD vs. TDCs, Passarotti et 

al., found that relative to the BD group, children with ADHD had greater deployment of prefrontal 

working memory circuitry whereas children in the BD group had greater deployment of emotional 

processing circuitry suggesting different neural phenotypes for ADHD and BD 58.  In a succinct review of 

the literature comparing neural activation in children with ADHD compared to those with BD, Passarotti 

and Pavuluri specify that in ADHD dysfunction is primarily due to deficits in top-down cognitive control 



regions (i.e., dorsal frontostriatal regions), whereas in BD dysfunction is driven by deficits in “bottom-

up” motivational and emotional circuitry (i.e., ventral frontostriatal regions) 59.  Taken together, while 

ADHD is primarily considered to be a behavioral disorder, these finding also suggest the importance of 

understanding the neural underpinning of emotional processing in individuals with ADHD 7,60. 

Only a few studies have examined reward processing in children with ADHD compared to other 

forms of psychopathology.  In a study comparing reward responsiveness in boys with ASD (N=18), boys 

with ADHD (N=19) and TDC boys (N=18), results showed that ADHD boys had medial prefrontal 

hyperactivation in response to social rewards while ASD boys had ventral striatal hypoactivation to 

monetary rewards and both clinical groups showed fronto-striato-parietal hypoactivation compared to 

TDCs when monetary rewards were present 61.  Therefore, while youth with ADHD had equally high 

striatal activation to monetary and social rewards, the ASD group displayed low striatal response to both 

reward types suggesting that while both disorders have aberrant responses to reward processing, they 

may have unique etiologies. 

Studies testing computerized algorithms in predicting ADHD group status are few in number.  

One example includes Hart et al.’s study that used Gaussian process classifiers to predict ADHD group 

status with data from a time-discrimination task, showing an overall classification accuracy of 75% (80% 

sensitivity, 70% specificity) 62.  In particular, aberrant activity in fronto-limbic regions such as the 

ventromedial PFC, ventral ACC, parahippocampal gyrus and cerebellum were most predictive of ADHD 
62.  Another study by Hart et al. used Gaussian process classifiers with fMRI activation during a stop-

signal task with an even greater accuracy of 77% (90% sensitivity, 63% specificity) 63.  In a third example 

Hammer et al. used working memory task data from four different tasks resulting in a diagnostic 

accuracy rate of 92.5% when using fMRI data compared to an accuracy of 75% when using the 

behavioral task data alone suggesting the important additive contribution of neuroimaging data in the 

classification of ADHD diagnosis 64.  Finally, a fourth large study of stop-signal performance in 

participants with ADHD (N=184), unaffected siblings (N=103), and TDCs (N=128) showed that neural 

activation during successful stop trials yielded an accuracy rate of almost 60% (63% sensitivity, 57% 

specificity) 65.  

In contrast, there have been numerous studies imaging/treatment studies examining the acute 

effects of psychostimulant medication on neural activation in children with ADHD.  Generally, studies 

comparing medication naïve ADHD patients to those treated with ADHD stimulants suggest that these 

medications “normalize” brain activation (i.e., increase) in PFC regions, including the ACC, during 



multiple tasks of inhibition, error processing, and sustained attention.  For example, Rubia et al.’s meta-

analysis of the task-based fMRI treatment literature including 14 studies of children with ADHD (N=212) 

showed that stimulants most consistently enhanced activation in the right inferior frontal cortex/insula 

and putamen 66.  However, to date, there has been only one longitudinal study examining the long-term 

effects of methylphenidate on executive attention in children with ADHD 67.  This study showed that one 

year later, while TDCs showed an increase in neural activity in the right temporo-patietal junction, 

important for the disengagement of attention, children with ADHD did not show this differential pattern 

of neural activity 67.  Further, medicated ADHD patients showed reduced activation in the insula and 

striatum during reorienting one year later suggesting a tendency for the “normalization” of neural 

activity subsequent to medication 67. 

 

ADHD: Resting State Functional Connectivity (RSN-FC) 

 

Augmenting task-dependent, event-related fMRI, the past several years have witnessed a 

groundswell of interest in task-independent fMRI collected while the participant is at rest, and also 

known as “resting state functional connectivity” (RSFC) or “intrinsic functional connectivity” (IFC).  In 

general, studies suggest that 95% of the brain’s metabolism is devoted to RSFC, whereas only 5% is 

devoted to task-dependent activities, such as making decisions, or attending to specific stimuli 68,69.   

Discovery science in resting-state fMRI is particularly robust in ADHD, due in part to projects 

designed to share data-sets amongst research such as the “1000 Functional Connectomes Project” in 

which researchers have posted their resting state fMRI data on the Neuroimaging Informatics Tools and 

Resources Clearinghouse (NITRC), a publicly available website (www.nitrc.org/projects/fcon_1000) 70,71.  

Many RSFC studies suggest ADHD involves reduced RSFC in the so-called “Default Mode Network” 

(DMN), which includes a large network of brain regions associated with task-irrelevant mental processes 

and mind wandering.  Studies have also found atypical RSFC in limbic cortico-striato-thalamo-cortical 

(CSTC) loop circuits supporting neuropsychological models of ADHD known as the “dual pathway 

model”—which posits that ADHD involves considerable heterogeneity of neural cognitive alterations, 

with some having primary neurocognitive deficits involving executive function and the cognitive CSTC 

loop, while other’s primary deficit involves affective and motivational systems and the limbic CSTC loop 
72-74.  

http://www.nitrc.org/projects/fcon_1000


To date, only a few multi-group RSFC studies have evaluated the specificity of findings in ADHD 

youth to those with other forms of psychopathology. Di Martino et al. found an ADHD-specific increase 

in degree centrality, a measure indexing the number of direct connections for a given node (i.e., high 

degree centrality=numerous direct connections with other nodes), in the right caudate, pallidum, and 

putamen among youth with ADHD (N=45) vs. those with ASD (N=56) and TDCs (N=50), once again 

highlighting the importance of the basal ganglia in the etiology of ADHD 75.  In another example, Ray et 

al. showed a differential pattern of “rich club organization” of RSFC—defined as a tendency for high-

degree nodes (i.e., nodes within a network that are highly connected) to be more densely connected 

among themselves than to nodes of a lower degree—among ADHD (N=20), ASD (N=16), and TDCs 

(N=20) children 41.  Specifically, ADHD had under-connectivity in the rich club, while ASD had over-

connectivity in the rich club 41.  In a third example, two recent studies evaluated RSFC in children with 

ADHD vs. those with BD. Hafeman et al. compared RSFC collected during an emotional processing task in 

youth with BD (N=22), youth with ADHD (N=30) and TDCs (N=26), and results showed decreased RSFC 

between the amygdala and right superior frontal gyrus in the ADHD vs. BD group 76.  In contrast, Son et 

al. compared youth with BD (N=22), youth with ADHD (N=25) and TDCs (N=22) and found no significant 

ADHD-specific differences between groups 77.  Such contrasting findings may be the result of different 

methodologies for conducting RSFC analysis. 

In contrast, efforts of the ADHD-200 competition 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html) have fueled a groundswell of interest in 

computerized classification of ADHD by RSFC results.  The ADHD-200 competition encouraged teams of 

researchers to develop machine learning methods to classify ADHD diagnosis using a standardized 

dataset consisting of RSFC data from 491 TDCs and 285 children with ADHD.  Results from the winning 

team showed a diagnostic accuracy rate of 60.51% (21% sensitivity, 94% specificity) 78.  Interestingly, 

another team achieved an accuracy rate of 62.52% using only phenotypic data (e.g., age, IQ, gender, etc) 

and no RSFC or imaging data, supporting the notion that neuroimaging is not the only means of 

predicting disease, and that we are in the early days of using imaging biomarkers to predict any 

psychiatric diagnosis, including ADHD.  

Very few neuroimaging/treatment studies of RSFC among ADHD children and adolescents exist.  In one 

example, Hong et al. found reduced RSFC in participants with ADHD who were considered “good 

responders” (N=48) to MPH treatment vs. “poor responders” (N=30), particularly connectivity between 

the ventral caudate/nucleus accumbens and the right rectal and orbitofrontal gyri as well as the dorsal 

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html


caudate to bilateral frontal cortices 79.  In another example, An et al. examined regional homogeneity 

(ReHo), which calculates the temporal similarity of time series of a given voxel to those of its nearest 

neighboring voxels, in resting-state fMRI data among boys with ADHD (N=23) scanned initially off 

medication, and then a second time half of the ADHD boys received 10mg methylphenidate (MPH) while 

the other half received placebo 80.  They found MPH vs. placebo upregulated activity in the left inferior 

frontal cortex, right OFC, and cerebellar vermis, while it downregulated activity in the right parietal and 

visual cortex.  Interestingly, when patients were treated with MPH, no RSFC differences were observed 

between the ADHD and control groups, suggesting a “normalizing” effect of MPH 80.  

 

MOOD AND ANXIETY DISORDERS: 

 Beyond ADHD, neuroimaging research has also advanced our understanding of the 

brain/behavior interactions underlying pediatric mood and anxiety disorders.  Similar with ADHD 

though, most studies have employed cross-sectional neuroimaging methods to identify structural, DTI, 

and fMRI differences between participants with mood and anxiety disorders vs. TDCs.  Given the 

considerable overlap between such disorders, although quantitative differences have been identified by 

such studies, there is clear need to probe their specificity, to independently replicate their findings, and 

to delineate their longitudinal trajectory.  Thus, there are no neuroimaging findings that would be 

considered biomarkers for pediatric mood and anxiety disorders on a case-by-case basis at present, 

though the discovery of such biomarkers is an important and needed goal.   

For this review, we focus on the following mood conditions: major depressive disorder [MDD], 

bipolar disorder [BD], and disruptive mood dysregulation disorder [DMDD].   

 

DEPRESSION: 

 Depression causes significant morbidity and mortality in children, adolescents, and young adults 

annually, including school and work absenteeism, substance abuse, and inter-personal conflict 81,82 .  

More disturbing is the fact that suicide has risen to become the 2nd leading cause of death among those 

ages 10-24 years old in the U.S. 83 . 

 Neuroimaging studies of pediatric depression have focused primarily on the amygdala as well as 

the PFC, including the OFC and ACC.  Yet, there is relatively little consistency in the direction (increased 

vs. decreased) of these findings, regardless of whether the neuroimaging method involves structural 



MRI, fMRI, or DTI.  For example, in comparing three structural MRI studies of amygdala volume in 

pediatric depression vs. TDCs, one study reported bilateral decreases while two failed to find such 

significant differences 84-86 . 

 Studies are also now in the early phase of employing machine learning or computer models of 

neuroimaging data to predict group membership.  Given the infancy of this work, no solid conclusions 

can yet be formed about the utility of such data as a diagnostic tool in the real-world. 

 

DEPRESSION:  Structural MRI 

 Fallucca et al. conducted the only multi-group structural MRI study of pediatric depression, 

comparing those children with MDD (N=24), OCD (N=24), and TDC (N=30).  Focusing on cortical 

thickness, they found that the right peri-calcarine gyrus, post-central gyrus, and superior parietal gyrus 

were thinner in depressed vs. OCD and TDC youths, whereas the left-sided temporal pole was thicker in 

depressed youths than in either group 87.  Moreover, secondary analyses showed that these cortical 

thickness differences were primarily driven by children with MDD who had a family history of MDD 

(N=15)—a finding directly in contrast with those of Nolan et al., who did not find PFC volume differences 

when comparing depressed youth with depressed family members to TDC 88 .  Instead, they found that 

depressed youth with non-familial MDD had significantly larger left PFC than those with familial MDD or 

TDC.  Such inconsistencies highlight the current state of the neural underpinnings of pediatric 

depression.  

Wehry et al. more recently conducted a quasi-multi-group study using voxel-based 

morphometry (VBM) to compare gray matter volumes among adolescents with MDD plus comorbid 

anxiety disorder(s) (N=12), those with MDD but no comorbid anxiety (N=14), and TDC (N=41).  They 

found that those with MDD plus comorbid anxiety had decreased gray matter volumes in the DLPFC vs. 

those with MDD alone, and increased gray matter volumes in pre- and post-central gyri vs. TDC 89.  This 

study, however, is limited by small sample size and also heterogeneity of comorbid anxiety disorders 

allowed (i.e., generalized anxiety, social anxiety, and anxiety not otherwise specified), precluding 

conclusions about any single anxiety disorder.  To allow for comparison across studies, further efforts 

are needed utilizing standardized methods of assessment and longitudinal design that account for 

extraneous factors (e.g., family history, comorbid conditions, age, medication status).  



 Finally, as aforementioned, researchers are now beginning to use computer modeling to assess 

the role of such neuroimaging findings as potential biomarkers for depression.  One example is by 

Foland-Ross et al. who used support vector machines (SVMs) to examine if baseline cortical thickness 

could identify adolescents who go on to develop clinically meaningful depressive symptoms vs. those 

who remain depression free 90 .  Specifically, they followed N=33 female adolescents (10-15 years old), 

who at initial evaluation were Axis I disorder naïve, for up to 5 years.  The primary finding was that 

baseline cortical thickness predicted the onset of depression with 70% accuracy (69% sensitivity, 70% 

specificity, p=0.02) comparing those who developed MDD (N=18) vs. those who remained depression 

free (N=15), with the right medial OFC, right precentral, left ACC and bilateral insular cortex most 

notably contributing to this prediction.  

 A second study by Wu et al. also used SVMs to compare the role of several neuromorphometric 

indices (including cortical thickness, volume and folding patterns) in categorizing individual adolescents, 

N=25 diagnosed with MDD and N=26 demographically matched TDCs 91.  The model with 78.4% accuracy 

identified 40/51 adolescents (76% sensitivity, 80.8% specificity, p=0.000049).  Dissimilar to Foland-Ross 

et al., the volumetric and cortical folding in the right thalamus and right temporal pole were most 

involved in differentiating the depressed from control teens.  Although both research groups were able 

to predict with high accuracy those who were depressed vs. not, the findings of Wu and also of Foland-

Ross are based upon small sample sizes.  Moving forward, there is need to include larger samples, 

demonstrate the specificity of such findings for pediatric depression vs. other psychiatric disorders, and 

to focus on the replicability of findings.  

 

DEPRESSION:  Diffusion Tensor Imaging (DTI) 

 While a few DTI studies have examined potential white matter abnormalities associated with 

pediatric depression, none are known to gauge the specificity of findings through use of a multi-group 

design 92,93 . 

 

DEPRESSION:  Functional MRI (fMRI) 

 The state of fMRI research in pediatric depression mirrors that of structural MRI studies in that 

few have probed the specificity of difference between MDD vs. TDC youths. 



 In fact, only three known studies have begun to evaluate the specificity of emotional face 

processing in pediatric depression.  In the first, Thomas et al. compared emotional face processing in 

girls with either MDD, anxiety (i.e., primary GAD or panic disorder), or TDC (N=5 in each group).  They 

found that depressed girls had significantly less left amygdala activity than anxious or TDC girls when 

viewing faces regardless of the stimuli’s emotional content 94 .  One strength of this research is the use 

of a multi-group design—comparing youth with MDD to TDC and another clinical group.  However, 

complicating these findings is the reliance on such small samples, as well the comorbid conditions 

potentially unaccounted for.  While none of the anxious youth were diagnosed with MDD, N=2/5 youth 

with MDD had GAD. 

In the second study, Roberson-Nay et al. evaluated emotional face encoding using a subsequent 

memory paradigm.  Specifically, participants first completed an event-related fMRI scan requiring them 

to attend to emotional face stimuli.  Then they completed a post-scan memory task that required them 

to identify if they had, or had not, seen certain emotional face stimuli during the fMRI task.  Unlike 

Thomas and colleagues who found decreased amygdala activity among depressed youth, they found 

that MDD youths (N=10) had increased left amygdala activity when successfully encoding emotional 

faces compared to anxious (N=11) and TDC (N=23) participants 95 .  Again, a notable subset of depressed 

youth had comorbid anxiety (N=4/10) while no anxious participants (i.e., 3 separation anxiety, 3 social 

anxiety, 9 GAD) were given a comorbid MDD diagnosis. 

In the third study, Beesdo et al. compared emotional face viewing in three groups of children 

ages 7-17 years: (1) MDD (N=26; 14 with comorbid anxiety and 12 without comorbid anxiety); (2) 

anxious youths without depression (N=16), and (3) TDC (N=45).  Among their findings, they noted 

disorder-specific alterations when passively viewing faces, with MDD participants having decreased 

activation, and anxious participants having increased activation, when viewing fearful vs. happy faces.  

Addressing the potential influence of comorbidity lacking in other studies, Beesdo found that excluding 

the subset of adolescents with comorbid MDD and anxiety did not alter results 96 . 

Two other studies compared face viewing in children with MDD vs. TDC, although they also 

considered the potential impact of comorbid anxiety.  Hall et al. compared unmedicated adolescents 

with MDD (N=32) to age and sex-matched TDC (N=23) 97.  They found that youth with MDD had greater 

bilateral amygdala activity than TDC in response to fearful vs. happy faces, such that this finding 

remained significant when controlling for comorbid anxiety.  In contrast, van den Bulk et al., compared 

adolescents with depression and/or anxiety disorders (N=25 total; N=17 MDD or dysthymia, N=6 with an 



anxiety disorder, N=2 with adjustment disorder with depression/anxiety) to TDCs (N=26) 98.  They found 

no significant between-group differences in activation patterns on the whole brain or specific ROI level 

(amygdala). However, they noted that dimensional anxiety scores (and not depression scores) predicted 

right amygdalar activity when viewing fearful, happy and neutral faces.  Again, next steps need to focus 

on including larger samples and additional psychiatric comparison groups in order to examine the 

specificity and replicability of such findings.  

Finally, Forbes et al. paired fMRI with a treatment study to evaluate neural activation changes as 

a result of treatment response.  This study compared pre- and post-treatment neural activity on a 

reward anticipation task among depressed adolescents (N=13) receiving either cognitive behavioral 

therapy (CBT; N=7) or CBT plus a selective serotonin reuptake inhibitor (SSRI; N=6).  Among their 

findings, they demonstrated that less medial PFC and greater striatal activity pre-treatment was 

associated with post-treatment clinical severity and reductions in comorbid anxiety symptomatology.  

Importantly N=10/13 participants had co-morbid GAD.  This suggests that fronto-striatal activity may be 

important in pediatric depression, plus highlighting the potential phenomenological and/or DSM 

nosological conundrum of the overlap between MDD and GAD, especially in children where irritable 

mood can serve as a diagnostic symptom for either disorder 99.  Tao et al. then compared N=19 

adolescents with MDD (N=4 with comorbid anxiety, N=2 with comorbid ADHD, N=8 with comorbid 

dysthymia or “other”) to N=21 TDCs such that the former underwent an 8-week trial of fluoxetine 

treatment.  At baseline, results showed that depressed youth had significantly greater activation in 

multiple ROIs including the amygdala, OFC and subgenual ACC during an emotional face processing task.  

At post-treatment, these activations were decreased and comparable to repeat TDC scan results 100.  

DEPRESSION: Resting State Functional Connectivity (RSFC) 

While a growing number of studies have used RSFC in adults with MDD (e.g., Sheline et al., 

2010; Veer et al., 2010; Anand et al., 2005), fewer have focused on pediatric MDD and those that have 

included only TDC as a comparison group 101-103 .  

Taken as a whole, although there clearly have been strides toward understanding the 

pathophysiology of pediatric depression, findings can best be described as preliminary as studies have 

used varying cross-sectional methodologies (e.g., different MRI tasks) with small samples of 

diagnostically complicated youth (e.g., presence of comorbid diagnoses).  To better examine the 

diagnostic specificity of neural differences and gauge their worth as potential biomarkers, future studies 

should therefore aim to replicate previous findings with larger samples, using similar (if not the same) 



imaging paradigms and methods for analysis—particularly to compare depressed youth to TDC, as well 

as other clinical groups.   

ANXIETY DISORDERS: 

Diagnoses included under the rubric of anxiety disorders have shifted with the adoption of the 

DSM-5.  Specifically, OCD and posttraumatic stress disorder have been moved out of the anxiety 

disorders group to other diagnostic groupings (OCD moving to the Obsessive-Compulsive and Related 

Disorders, and PTSD to Trauma and Stressor-related disorders) in line with phenomenological and 

neurobiological evidence that they differ from the “phobic” anxiety disorders –i.e., GAD, social anxiety 

(SOC), panic (PD), separation anxiety (SAD), and specific phobias (SP).  These five disorders, the focus of 

the current review, are commonly collapsed under the umbrella term of ‘anxiety disorders’ in studies 

examining their overarching clinical features, functional impairment, and neural underpinnings. 

Moreover, this grouping is largely consistent with the findings of several important studies describing 

them as the fear-based internalizing disorders (compared to dysphoric or distress disorders which 

include GAD, MDD, and dysthymia) 104-106.  GAD was nevertheless included in this grouping given its 

relevance (and high co-occurrence) with other anxiety disorders, as well as the paucity of efforts existing 

to delineate the pathophysiology of GAD alone 107 .   

That said, studies of anxiety implicate a “fear circuit” consisting of the amygdala, medial and 

lateral PFC, and hippocampus in the underlying pathophysiology 108 .  More broadly, these studies 

include animal models, typically developing humans across the lifespan, and adult patients diagnosed 

with anxiety.  Neuroimaging studies of pediatric anxiety have focused on these ROIs, though conclusions 

about potential biomarkers are again limited by relatively small sample sizes and the need for more 

studies that can test the specificity of such findings. 

Pediatric Anxiety Disorders:  Structural MRI 

 Structural MRI studies have implicated the amygdala in the pathophysiology of pediatric anxiety.  

However, the direction (increased or decreased volume) of these findings vs. TDC participants is often 

inconsistent.  For example, De Bellis et al. found that GAD participants (N=12) had significantly larger 

right and total amygdala volumes vs. age-, sex-, height-, and handedness-matched TDCs (N=24) 109.  In 

contrast, Milham et al. found the opposite, with anxious youths (GAD, SAD, and/or SOC) having 

decreased left amygdala volume and no difference in either right or total amygdala volume vs. age-, 

gender-, and intelligence-matched TDC (N=34) 110 .  In line with Milham et al., Mueller et al. also found 

smaller amygdala and hippocampal gray matter volume (with inverse pattern for the insula) in 39 



adolescents diagnosed with an anxiety disorder (GAD, SOC, SP, and/or SAD) compared to 63 TDCs 111.  

Post-hoc analyses explored the specificity of these findings, showing that SOC contributed uniquely to 

the amygdala and hippocampus gray matter volume reductions although this finding must be 

considered preliminary given the small number of youth diagnosed with social anxiety (N=11).  Strawn 

and colleagues have conducted a series of studies evaluating structural changes among adolescents with 

GAD vs. TDCs.  In two such studies, they found that adolescents with GAD (N=15) have decreased gray 

matter volume in the left orbital gyrus and posterior cingulate (N=28 TDC) 112 , and that adolescents with 

GAD plus SOC and SAD (N=32) had decreased volume of the inferior frontal gyrus, left postcentral gyrus 

and cuneus vs. TDCs (N=27) 113.  Strawn also found that, compared to TDCs (N=19), GAD youth without 

comorbid depression (N=13) had increased cortical thickness in areas implicated in fear learning, 

extinction, and regulation of the amygdala, including the right inferolateral and ventromedial PFC, left 

inferior and middle temporal cortex, and right lateral occipital cortex 114.  

 To the best of our knowledge, no study has tested the specificity of potential structural MRI 

alterations in pediatric anxiety disorders.  This deficiency is related to the lack of large, well-powered 

multi-group studies.  Qin et al., however, have examined machine learning algorithms to assess the 

utility of structural and functional MRI abnormalities for predicting trait anxiety among TDCs without 

formal anxiety disorder diagnoses (N=76, of which N=38 were boys) at the individual level 115.  They 

found increased volume in the left amygdala predicted higher parent-reported anxiety symptoms 

(r (predicted, observed) = 0.33, p=0.005), although right amygdala volume did not (r(predicted, observed) = 0.10, 

p=0.17). They also found that greater functional connectivity between the left amygdala and multiple 

brain regions (e.g., lateral occipital and inferior temporal cortices in the sensory association cortex, 

frontal eye field and superior parietal lobe, putamen and ventral striatum in the basal ganglia, and 

thalamus, hypothalamus, and midbrain) significantly predicted individual anxiety per parent report.  

Next steps are needed to examine the specificity and replicability of such prediction findings among 

youth diagnosed with clinical anxiety disorders and with a longitudinal study design.  

 

 

Pediatric Anxiety Disorders:  Diffusion Tensor Imaging (DTI) 

Unfortunately, to the best of our knowledge, there are no DTI studies that evaluate the 

specificity of white matter abnormalities in pediatric anxiety disorders (i.e., GAD, SOC, SAD, PD, SP). 



Pediatric Anxiety Disorders:  Functional MRI 

As in studies of pediatric depression, several studies have used event-related fMRI to examine 

the brain/behavior interactions underlying pediatric anxiety disorders.  Also, as in studies of depression, 

many of these have employed emotionally-valenced visual stimuli, including faces, and have focused on 

the amygdala given its role in both fear circuitry and face processing. 

In fact, the multi-group studies by Beesdo et al. and Thomas et al. described above in the 

pediatric depression section are among the best examples.  Specifically, Beesdo et al. found that anxious 

youths without depression (N=16) had significantly greater amygdala activation when passively viewing 

fearful vs. happy faces compared to those with MDD plus comorbid anxiety (N=26) and to TDC 

participants (N=45) 96.  Additionally, Thomas et al. found similar patterns of exaggerated amygdala 

activity for a small sample of anxious youth vs. separate groups of TDC and depressed peers (N=5 in 

each group).  While both anxious and TDC youth showed overall increased amygdala activity when 

viewing faces regardless of emotional content, only the anxious youth had significantly increased right 

amygdala activity when viewing fearful vs. neutral faces, and the magnitude of this neural activation 

correlated positively with child-reported anxiety on the Screen for Child Anxiety Related Disorders 

(SCARED).  In contrast, the depressed group showed decreased left amygdala activity when viewing 

fearful faces suggesting different neural alterations in pediatric anxiety versus depression 94. 

Other fMRI studies, while not outright comparing two patient groups to TDC participants, have 

at least attempted to acknowledge the potential role of comorbid conditions. 

In this vein, Monk et al. compared GAD (N=17) to TDC participants (N=12) while attending to 

emotional faces.  Their main finding was that those with GAD had significantly increased amygdala 

activity vs. TDCs when viewing angry faces, and that level of activation was significantly and positively 

correlated with anxiety disorder severity.  Post-hoc comparisons to test specificity showed that both 

GAD only (N=9) and those with both GAD and MDD (N=8) had greater amygdala activation than TDCs, 

suggesting that comorbid depression was not driving their results 116. 

Swartz et al. aimed to extend the understanding of amygdala dysfunction present in pediatric 

anxiety disorders by assessing its activation and connectivity over time. Specifically, they compared 

youth with anxiety (N=34, primary GAD, SP, SAD, some with secondary diagnoses of OCD and PTSD) to 

TDCs (N=19) while performing an emotional face-matching task.  Activation patterns were compared for 

different portions of the task, which was separated into thirds (initial vs. prolonged exposure to stimuli) 
117.  They showed that anxious youth had increased amygdala activation during the first third of the task 



compared to TDCs, but that this activation significantly decreased over time.  There was also evidence 

that youth with anxiety had altered prefrontal cortex-amygdala connectivity, such that TDCs had greater 

context-modulated connectivity during the first third of the task whereas anxious youth had increased 

context-modulated connectivity during the second third of the task.  

Studies have also begun to focus on examining the pathophysiology underlying pediatric anxiety 

disorders using non- face processing tasks although only a few have included two clinical groups and 

healthy controls.  For example, Guyer et al. compared adolescents with GAD (N=18, all without 

comorbid SOC) to those with SOC (N=14, 3 with comorbid GAD) to TDCs (N=26) using the monetary 

incentive delay task, which engages the striatum during anticipation of monetary gains or losses 118.  

Findings showed that youth with SOC had greater activation in the caudate and putamen when 

anticipating incentives vs. TDCs and GAD, whereas youth with GAD showed a unique valence-specific 

putamen response (i.e., greater activation during potential gain vs. loss trials).  Fitzgerald et al., used the 

multi-source interference task to examine activation, particularly in the posterior medial frontal cortex 

(pMFC) and DLPFC, among female youth with non-OCD anxiety disorders (N=23; GAD, SOC, and SAD) vs. 

those with OCD (N=21) and TDCs (N=25) 119.  Findings showed that the non-OCD and OCD groups had 

hypoactive DLPFC error processing compared to TDCs, while there were no differences found in 

activation between the clinical groups.  

No studies have employed machine learning techniques to evaluate fMRI neuroimaging findings 

as potential biomarkers of pediatric anxiety disorders.  However, McClure et al. have paired 

neuroimaging with treatment to explore potential neural markers of treatment response.  Specifically, 

they showed that greater pre-treatment amygdala activation during a face-attention task was 

significantly associated with better treatment response for youth with primary GAD or SOC (N=12) 

receiving either 8-weeks of CBT (N=7) or fluoxetine (N=5).  Of note, treatment type (psychotherapy vs. 

medication) was chosen by families, and all participants significantly improved during treatment, though 

neural predictors of treatment outcome were not compared across treatments 120. 

To address this limitation, Maslowsky et al. 2010 extended McClure’s findings by comparing 

vlPFC and amygdala activity for GAD participants treated with CBT vs. those treated with fluoxetine (N=7 

of each).  While both groups significantly improved and had increased post- vs. pre-treatment vlPFC 

activity, only the CBT group had increased bilateral amygdala activity.  Post-treatment vlPFC or amygdala 

activation did not significantly relate to the decrease in anxiety symptoms from pre- to post-treatment 
121. 



Pediatric Anxiety Disorders:  Resting State Functional Connectivity (RSFC) 

 To our knowledge, there are not yet any studies examining RSFC in pediatric anxiety disorders 

that include multiple clinical groups and healthy controls.  The few studies that have compared anxious 

youth, particularly those with GAD to TDCs only, highlight the connectivity of the amygdala.  For 

example, Roy et al. evaluated RSFC between sub-nuclei of the amygdala and the rest of the brain in 

adolescents with GAD (N=15 total; N=12 with comorbid SOC, SP, PD, SAD, MDD and/or OCD) vs. TDCs 

(N=20) 122.  They found that youth with GAD had complicated patterns of disruption in an amygdala-

based network, including decreased connectivity between the centromedial amygdala and the VMPFC 

and between the superficial amygdala and cerebellum.  They also found youth with GAD had increased 

connectivity between the centromedial amygdala, insula and superior temporal gyrus; superficial 

amygdala, DLPFC and DMPFC; and basolateral amygdala and cerebellum.  Post-hoc analyses examined 

the potential effect of comorbidity, first by excluding youth with GAD and comorbid MDD, and then 

those with GAD and comorbid SOC.  All group differences in amygdala functional connectivity remained 

significant.  Similarly, Liu et al. found alterations in amygdala connectivity when comparing youth with 

first-episode GAD (N=26) to age-matched TDCs (N=20) 123.  Specifically, youth with GAD had decreased 

functional connectivity between the left amygdala and left DLPFC, as well as increased connectivity 

between the right amygdala and right posterior and anterior lobes of the cerebellum, insula, superior 

temporal gyrus, and putamen. 

In summary, the current state of neuroimaging as a potential biomarker of pediatric anxiety 

disorders resembles that of depression—i.e., these data are important clues about the pathophysiology 

of anxiety, but they are far from ready for clinical application to the diagnosis and treatment of anxiety 

disorders in children.  For this to ever become a reality, we need more studies, involving large samples 

and longitudinal assessments.  There is also a need to determine the specific brain/behavior interactions 

underlying particular types of anxiety, rather than clustering them.  

 

Pediatric Bipolar Disorder (BD):  

 As discussed above, we note that mechanism-oriented research, including neuroimaging and 

other phenomenological data, meant to address ongoing controversies about bipolar disorder (BD) in 

children and adolescents led to changes in DSM-5.  Specifically, studies led by Leibenluft et al. compared 

two groups of children to one another and to TDCs:  (1) “narrow phenotype BD youth” with distinct 

episodes of euphoria and (2) “severe mood dysregulation (SMD) youth” with a chronic course of 



functionally impairing irritability 124,125.  More than a decade of research, including structural and fMRI 

studies, led to the inclusion of a new diagnosis in DSM-5 known as “disruptive mood dysregulation 

disorder” (DMDD) based on the SMD criteria of chronic disabling irritability not due to another cause, 

such as ADHD, ASD, etc.  Nevertheless, BD remains an important diagnosis because of the substantial 

associated morbidity and also difficulty making the diagnosis, including parsing it from other conditions, 

such as ADHD and now DMDD despite DSM-5 prompts that suggest the dichotomy should be clear.  

Data preceding DSM-5’s releasein 2013 suggested that more children in the U.S. and internationally 

were being diagnosed with BD from the mid-1990s through the mid-2000s 126-128.  It remains unclear if 

these DSM-5 changes have reduced this trend or potentially shifting it to increases in children diagnosed 

with DMDD.  Thus, there is a pressing need for greater understanding of the neural mechanisms 

underlying BD that might be leveraged to improve sensitivity and specificity of diagnosis, or to develop 

targeted treatments. 

 Research examining neural correlates of BD has focused on fronto-temporal neurocircuitry.  In 

particular, researchers have explored the relationships between frontal regions of the DLPFC and VLPFC, 

temporal regions, including the amygdala, and striatal regions, including the caudate and accumbens 

area.  As highlighted below, there are a number of multi-group and treatment/imaging studies that have 

begun to evaluate the specificity of these neuroimaging findings in BD youths, but there are few studies 

that employ machine learning or other computer algorithms to predict diagnostic status or treatment 

outcome.  Such work is progressing, but is important to note that, as in the other disorders discussed, 

there is no current neuroimaging biomarker for pediatric BD that is useful on a clinical case-by-case 

basis. 

Pediatric BD:  Structural MRI 

Structural MRI studies have implicated fronto-temporal alterations in the pathophysiology of 

pediatric BD.  By far, the most consistent anatomical finding in pediatric BD is significantly reduced 

amygdala volume compared to TDC, now found in seven of nine cross-sectional structural MRI studies to 

date 129-135, but not in two others 136,137.  This is among the more replicated neuroimaging findings in 

either children or adults with any form of psychiatric illness. 

Although there are few multi-group structural MRI studies that compare BD youths to those 

with other forms of psychopathology, it is interesting to note that the two that failed to find significant 

decreases in amygdala volume were multi-group studies.  Specifically, Lopez-Larson et al. studied four 

groups of children:  (1) those with BD plus comorbid ADHD (N=23), (2) those with BD without ADHD 



(N=30), (3) those with ADHD without BD (N=23), and (4) TDC participants (N=29).  Rather than finding 

BD-specific structural MRI differences, instead they found that ADHD youths had significantly smaller 

total amygdala volume as well as total caudate and putamen volume vs. BD with ADHD, BD without 

ADHD, and TDC groups 137. 

Frazier et al. also conducted a four-group, cross-sectional MRI study, including the following: (1) 

BD plus psychosis (N=19), (2) BD without psychosis (N=35), (3) schizophrenia (N=20), and (4) TDC (N=29).  

There were no significant differences between the BD and schizophrenia groups with respect to 

amygdala (or hippocampal) volume.  However, they did identify a group X sex interaction, with 

schizophrenic males having the smallest left amygdala volume, while BD females having the smallest 

hippocampal volumes 136. 

Two interesting multi-group morphometry studies have been conducted with BD and DMDD 

youth.  The first by Adleman et al. found that both BD (N=55) and SMD youth (N=78) had decreased gray 

matter volume of the pre-supplementary motor area (pre-SMA), DLPFC, and insula vs. TDCs (N=68), 

while BD youth had increases in the globus pallidus vs. the other two groups.  At a mean of 

approximately 2 years later, BD youth had abnormal increases of the right superior and inferior parietal 

lobule and precuneus 138.  The second by Gold et al. from the same NIMH research group found specific 

changes in the left DLFPC, with BD youth (N=20) having decreased, and anxious youth (N=39) having 

increased volume compared to TDCs (N=53).  Both BD and DMDD (N=52) participants had decreased 

gray matter volume vs. TDCs in the right DLPFC 139. 

With respect to other multi-group comparisons, as discussed in the ADHD section, Liu et al. 

compared the following four groups of children and adolescents:  (1) BD plus comorbid ADHD (N=17), (2) 

BD without ADHD (N=12), (3) ADHD without BD (N=11), and TDC (N=24) 138.  Although the ADHD-only 

findings have been discussed in the ADHD section, it is notable that Liu found that BD-only participants 

had larger caudate, putamen, and globus pallidus volumes than the other groups 140. 

Chiu et al. evaluated anterior cingulate gyrus volume in children with (1) BD (N=16), (2) ASD 

(N=24), and (3) TDC (N=15).  Results showed that BD participants had significantly smaller left anterior 

cingulate gyrus volumes compared to both the ASD and TDC participants.  There was no such difference 

in right anterior cingulate gyrus volume 141. 

Pediatric BD:  Diffusion Tensor Imaging (DTI) 



Few DTI studies have evaluated the specificity of white matter alterations to pediatric BD by 

conducting multi-group studies.  Separately, Frazier et al. compared children (1) with BD (N=10), (2) at-

risk for BD by having a first-degree relative with BD (N=7), and (3) TDC (N=8).  The BD group had 

decreased FA in the cingulate-paracingulate white matter vs. both at-risk and TDC participants, whereas 

both BD and at-risk participants had reduced FA in the bilateral superior longitudinal fasciculus 142.  In 

another study, Pavuluri et al. compared FA in children with (1) BD (N=13), (2) ADHD (N=13) and (3) TDC 

(N=15).  No findings distinguished the BD participants from either the ADHD or TDC groups 39.  

Additionally, one study using DTI to classify BD vs. TDC has been conducted.  A recent study by Mwangi 

et al. used FA and axial and radial diffusivity from BD and TDC participants (N=16 of each), to train a 

support vector machine algorithm that had 87.5% specificity and 68.75% sensitivity for predicting group 

status, though this study did not use an independent sample of BD and TDC participants to test this 

algorithm 143. 

Pediatric BD:  Functional MRI (fMRI) 

 FMRI studies of pediatric BD participants have probed the brain and behavior interactions 

underlying a number of cognitive and emotional processes, including emotional face processing, 

attention, and cognitive flexibility.  Most of these studies have identified relative differences between 

BD and TDC youths.  However, some have begun to address issues of specificity by multi-group 

comparisons or by pairing imaging with treatment. 

For example, Brotman et al. evaluated attention to emotional faces by comparing youths 

diagnosed with: (1) BD (N=43), (2) ADHD (N=18), (3) SMD (N=29), and (4) TDC participants (N=37).  

Whereas prior studies had demonstrated that pediatric BD participants had altered PFC–amygdala–

striatal neural activation vs. TDC children when viewing faces, including pictures of faces with happy, 

angry, or neutral emotions 135,144,145, Brotman et al. did not find BD-specific findings.  Instead, in addition 

to the ADHD-specific findings discussed in the ADHD-fMRI section, Brotman et al found that SMD 

participants had significantly decreased amygdala neural activation vs. those either meeting Leibenluft 

et al. 2003’s criteria for narrow-phenotype BD (i.e., having clear-cut episodes of mania with elevated, 

expansive mood), or those with ADHD or TDC 56,124.  

Thomas et al. used an implicit face-emotion processing task to demonstrate that BD participants 

(N=20) had significantly less amygdala activity in response to angry vs. neutral faces than either SMD 

(N=21) or TDC participants (N=16) 146.   



Passarotti et al. employed an emotional valence Stroop task (i.e., requiring participants to match 

the color of a positive, negative or neutral word to a one of two presented colored circles) to study 

children and adolescents with either (1) BD (N=17), (2) ADHD (N=15), and (3) TDC (N=14).  Both BD and 

ADHD participants had greater DLPFC and parietal cortex activation than TDC when viewing negative vs. 

neutral words.  Despite these shared regions of hyperactivity, differences between the patient groups 

also emerged.  Specifically, BD participants had greater activation in the VLPFC and ACC, whereas the 

ADHD group showed decreased VLPFC and ACC activity 57.  

Passarotti et al. again compared youth with BD (N=23) or ADHD (N=14), and TDC (N=19) 

participants while watching faces.  They found that BD participants had greater activity in regions 

implicated in emotional processing (e.g., left medial PFC, subgenual ACC), while the ADHD group showed 

greater activity in regions implicated in prefrontal working memory (e.g., left DLPFC, pre-motor regions) 
147. 

There are several treatment/imaging studies involving pediatric BD participants.  For example, 

Chang et al. have examined the brain activity of BD adolescents (N=8) treated with lamotrigine.  

Specifically, they evaluated brain activity while viewing negative and neutral emotional pictures at 

baseline and following eight weeks of treatment 148.  They found a significant decline in depressive 

symptoms that was also associated with decreased right amygdala activity when viewing negative 

pictures. 

Pavuluri and colleagues have conducted a series of important studies comparing fMRI activity in 

BD youths before and after treatment with several anti-manic medications, including lamotrigine, 

risperidone, and divalproex.  These studies employ block-design methodology, which is very good at 

detecting between-group differences in neural activation though its ability to detect group-by-cognitive 

task differences is limited compared to event-related fMRI experiments.  Taken as a whole, these studies 

corroborate the fact that anti-manic medications differentially influence the neurocircuitry underlying 

pediatric BD 149-152. 

Such studies, pairing neuroimaging and treatment, are very important to advancing our 

understanding of potential bio-behavioral markers that would guide treatment, akin to what is 

commonplace in cancer treatment.  However, it is early in this process, with need for replication to 

ascertain what, if any, neural markers can ultimately guide treatment decisions or predict outcome. 

 



 

Pediatric Bipolar Disorder:  Resting State Functional Connectivity (RSFC) 

The number of RSFC studies among BD youth has grown over the past few years, with studies 

particularly interested in RSFC alterations in the PFC-amygdala-striatal circuit implicated in pediatric BD 
153-155.  However, there is a real need for studies to take the next step—i.e., to examine specificity.  At 

present, one of the few examples that has done this is a study by Stoddard et al. who used a seed-based 

analysis of sub-nuclei of the amygdala to show that BD youth (N=14) had significantly and specifically 

increased RSFC between the left basolateral amygdala and the medial aspect of the left frontal pole vs. 

both TDC (n=20) and SMD youth (N=19) with chronic severe irritability 156.    

 

 

AUTISM SPECTRUM DISORDER (ASD): 

ASD which includes autistic disorder, Asperger’s Disorder, and pervasive developmental disorder not 

otherwise specified (PDD-NOS) previously separated in DSM-IV, are among the most common and 

impairing psychiatric conditions affecting children and adolescents today.  The Centers for Disease 

Control (CDC) has shown that the incidence of ASD had risen 10-fold from the year 1980 to the year 

2000, affecting as many as 1/68 children up to age 8 in the United States according to a 2016 article 
157,158.  As in other disorders, such as pediatric BD, it remains uncertain if this represents better 

awareness of ASD, over- or mis-diagnosis, or a combination. 

Thus, there is a pressing need to understand the neural underpinnings of ASD.  As in other disorders, 

studies have employed structural MRI, fMRI, and DTI to elucidate the underlying neurobiology 

associated with ASD.  Most of these have examined brain changes in ASD children and adolescents 

compared to TDC, with few examining the specificity of these findings by comparing sub-types of ASD 

participants to one another (i.e., autistic disorder vs. Asperger’s Disorder) or to those with other 

neuropsychiatric conditions (i.e., those with primary ADHD or other non-ASD developmental delay 

[DD]). 

A plethora of brain regions from every lobe have been implicated in the neuropathology of ASD, 

from sub-regions of the PFC to temporal, parietal, and occipital cortex, as well as the cerebellum 159,160.  

One important finding in ASD research has been early brain overgrowth in those affected by ASD.  This 

has been demonstrated not only in neuroimaging studies, but also in studies examining head 



circumference and post-mortem neuropathology in those affected by ASD 161-167.  However, for 

individual children, such findings are not yet useful as diagnostic biomarkers of ASD, whereby a 

measurement could rule in, or rule out, ASD. 

It is beyond the scope of this piece to summarize the wealth of neuroimaging studies conducted 

with those affected by ASD across the lifespan.  Thus, what follows represents only a sampling of this 

work.  However, to date, no replicated MRI neuroimaging biomarker for ASD has been identified that 

can improve the specificity or quality of ASD diagnosis or its treatment. 

ASD:  Structural MRI 

 Multi-group studies have begun to probe the specificity of structural MRI alterations associated 

with ASD.  For example, Kaufmann et al. evaluated cerebellar vermis volume in 3-9 year-old boys with:  

(1) idiopathic autism (N=10), (2) Down syndrome plus autism (N=16), (3) fragile X syndrome plus autism 

(N=13), or (4) TDC participants (N=22).  Results showed that the ratio of cerebellar vermis lobules VI-VII 

to total intracranial area was smaller only in those with idiopathic autism compared to the other groups, 

whereas increases in lobules VI-VII were seen in autism associated with fragile X syndrome 168.  In 

another example, Petropoulos et al. failed to find specific alterations among 3-4 year olds with either (1) 

ASD (N=45), (2) TDC (N=26), or (3) DD (N=14), though they were examining a different brain region—the 

mid-sagittal corpus collosum—and also did not focus exclusively on boys 169.  

Other studies have begun to compare structural MRI alterations between participants with ASD 

and those with other forms of developmental delay.  For example, Petropoulos et al. compared 2-4 year 

olds with either (1) ASD (N=60), (2) TDC (N=10), and (3) developmental delay (DD; N=16).  For this study, 

DD participants’ delay was based upon impairments in standardized intellectual and adaptive tests, but 

not meeting ASD criteria by the Autism Diagnostic Observation Schedule–Generic (ADOS-G) or clinical 

evaluation.  Covarying for age, they found that DD participants had prolonged cortical gray matter and 

white matter T2 relaxation vs. both ASD and TDC participants, whereas ASD participants had prolonged 

cortical gray matter T2 relaxation, but not white matter T2 relaxation, compared to TDC participants.  

They conclude that their data implicate a more general delay in neuronal maturation among DD 

participants, whereas ASD participants’ delay may involve gray, but not white, matter 170.  Herbert et al. 

compared ASD participants to those with developmental language delay (DLD).  They found no 

significant differences in white matter volume between ASD and DLD participants, though both differed 

from TDC 171.  A related study by Herbert et al. evaluated cortical asymmetry among boys with (1) ASD 

(N=16), (2) DLD (N=15), and (3) TDC (N=15).  Compared to TDC participants, those with either ASD or 



DLD had a greater aggregate volume of significantly asymmetrical cortical parcellation units (leftward 

plus rightward; 41.7% ASD, 32.6%, 20.1%) and larger aggregate volume of right-asymmetrical cortex 

(28% ASD, 22% DLD, 7% TDC).  This rightward bias was more pronounced in ASD participants than those 

with DLD.  Moreover, DLD but not ASD participants had a small but significant loss of leftward 

asymmetry compared with TDC participants.  From this, the authors conclude that the right-asymmetry 

increase may be a consequence of early abnormal brain growth trajectories in ASD and DLD, while 

higher-order association areas may be most vulnerable to connectivity abnormalities associated with 

white matter increases 172. 

With respect to studies comparing ASD participants to those with other forms of 

psychopathology, Voelbel et al. compared boys with (1) ASD (N=38), (2) BD (N=12), and (3) TDC (N=13).  

They found that ASD participants had greater left and right caudate volume when covarying for 

intracranial volume and stimulant use.  Likewise, larger left and right caudate volumes in ASD predicted 

a riskier response strategy in an attention task, while the inverse was significant in TDC participants 173. 

Similarly, Mostofsky et al. evaluated the relationship between motor cortex white matter 

volume and motor performance among children with either (1) ASD (N=20), (2) TDC (N=36), or (3) 

primary ADHD (N=20).  Motor impairments were evaluated using the Physical and Neurological 

Examination of Subtle Signs (PANESS).  They found that the correlation between PANESS score and left 

motor cortex white matter volume significantly differentiated ASD children from those with either ADHD 

or TDC, with increased white matter volume predicting poorer motor skill.  From this, the authors 

concluded that these alterations in cerebral volume in ASD participants may be more representative of 

global patterns of brain abnormalities likely mediating other aspects of ASD, including social and 

communication deficits 174. 

Brieber et al. used voxel-based morphometry to evaluate whole-brain alterations between 10-

16 year olds with (1) ASD (total N=15 including N=13 with Asperger’s plus N=2 HFA) (2) ADHD (N=15), 

and (3) TDC (N=15).  They found ASD-specific increases in gray matter volume of the right supramarginal 

gyrus, an area mediating mentalising and theory of mind abilities 19. 

Several studies have begun testing the role of structural MRI parameters in confirming the 

clinical classification of ASD participants.  For example, Akshoomoff et al. used discriminant function 

analysis of MRI brain measures, including cerebellar vermis volume, total brain volume, and gray and 

white matter volumes, to classify ASD (N=52) and TDC (N=15) participants.  They found that 95.8% of 

ASD and 92.3% of TDC participants were correctly classified.  By adding functional impairment measures, 



they correctly classified 85% of ASD cases as lower functioning and 68% of ASD cases as higher 

functioning 175. 

Relatedly, Jiao et al. used machine-learning techniques to determine if thickness- and/or 

volume-based structural MRI parameters could accurately distinguish between children with ASD (N=22) 

and TDC (N=16).  They found that thickness-based models were more effective than volume-based 

methods in differentiating ASD from TDC participants, with an 87% accuracy rate 176   In a separate, but 

related study, Jiao et al. 2011 used machine learning techniques to test if thickness- and volume-based 

measures could differentiate between 6-15 year olds with either Asperger’s Disorder (N=5) or high-

functioning autism (HFA; i.e., autistic disorder with normal IQ; N=13).  However, they found that neither 

of these was able to effectively distinguish between these two groups 177. 

Although such results are promising, they require further study, as there is no consistent, 

replicated structural difference, or pattern of differences, that yet would serve as a biomarker to of ASD.  

Importantly, these studies have failed to consistently differentiate across the ASDs—i.e., to differentiate 

among participants with autistic disorder, Asperger’s Disorder, or PDD-NOS—or to consistently 

differentiate participants with either HFA, low-functioning autism (LFA, autistic disorder with IQ<70), or 

Asperger’s Disorder, including studies examining the amygdala or hippocampus; cerebellum or 

cerebellar vermis; or total gray matter, white matter, or cerebral volume 178-181.  The failure of 

neuroimaging studies to reliably distinguish between ASD subtypes, coupled with similar concern about 

symptom assessments (i.e., diagnostic interviews and questionnaires) likely contributed to DSM-5’s 

change to lump all ASDs together.  

ASD:  Diffusion Tensor Imaging (DTI) 

Several recent DTI studies have begun to evaluate the specificity of white matter alterations 

among ASD participants.  For example, Barnea-Goraly et al. evaluated white matter integrity via DTI 

scans among children with ASD (N=13), their unaffected siblings (N=13), and a separate group of 

unrelated TDC (N=11).  They found that children with ASD and, to a lesser extent, their unaffected 

siblings, had reduced white matter FA in the right medial prefrontal white matter, right anterior forceps, 

corpus callosum, right superior longitudinal fasciculus, superior temporal gyrus, and temporoparietal 

junctions 182.   

Lange et al. examined white matter measurements from the superior temporal gyrus (STG) and 

temporal stem in males with either HFA or TDC (N=30 of each).  With respect to the STG, they found 

reversed hemispheric asymmetry of two measures of white matter diffusion coherence: tensor 



skewness, and FA.  Specifically, HFA participants had greater STG tensor skewness on the right and 

decreased FA on the left compared to TDC participants.  They also found increased omni-directional, 

parallel, and perpendicular diffusion in the right, but not left, temporal stem among HFA participants vs. 

TDC.  Most interesting, these six measures had a very high rate of discriminating ASD from TDC 

participants with 92% accuracy (94% sensitivity, 90% specificity) in their original sample as well as a 

replication sample of males with idiopathic autism (N=12) and TDC (N=7) 183. 

Ingalhalikar et al. devised and tested a DTI-based classifier system among ASD (N=45) and TDC 

(N=30) participants.  Their model employed a high-dimensional non-linear support vector model to 

develop an abnormality score involving FA differences mainly in right occipital regions as well as in left 

superior longitudinal fasciculus, external and internal capsule while mean diffusivity (MD) discriminates 

were observed primarily in right occipital gyrus and right temporal white matter.  Using this abnormality 

score, their ability to distinguish between ASD and TDC participants achieved 80% accuracy using leave 

one out (LOO) cross-validation, with high significance p<0.001 (~74% sensitivity, ~84% specificity) 184. 

In sum, DTI research is clearly an emerging and promising tool in understanding 

neurodevelopmental alterations associated with ASD.  However, there is a need to both replicate the 

above findings, as well as to test their specificity by comparing ASD participants to those with other 

forms of developmental delay or other primary psychopathology. 

ASD:  Functional MRI (fMRI) 

 FMRI studies have probed numerous circuits implicated in ASD, including those with tasks 

probing cognitive and emotional processes as well as task-independent RSFC.  However, like structural 

MRI studies, these studies are limited by small sample sizes, lack of replication, and an inability to 

consistently discern between ASD and other disorders.  Presently, there are no fMRI neural biomarkers 

that can diagnose ASD. 

Several multi-group studies have examined fMRI activation among ASD youth during cognitive 

processes, including attention, response to biological motion, and empathy.  For example, Malisza et al. 

evaluated visual attention in children with (1) ASD (N=8), (2) ADHD (N=9), and (3) TDC (N=9).  They found 

that the ASD group had greater activation in the occipital gyrus and less activation in the hippocampal 

gyrus than either ADHD or TDC participants, suggesting that attentional processing relies on different 

neural mechanisms in ASD and ADHD participants 185.  Christakou et al. also used fMRI to examine 

sustained attention in boys with ASD (N=20), ADHD (N=20), and TDC (N=20).  ASD boys had increased 

cerebellar activation vs. ADHD and TDC participants, whereas ADHD boys had significantly reduced left 



DLPFC activation vs. ASD participants.  They also found that ADHD and ASD boys had significantly 

reduced activation compared to TDC participants in bilateral striato-thalamic regions, left DLPFC, and 

superior parietal cortex as well as significantly increased precuneus 50. 

Kaiser et al. evaluated the brain response to biological motion—meaning motion that looks like 

that of an animate object (e.g., an animal walking, running, or sitting in contrast to random motion, like 

swirling dots)—in children and adolescents with either (1) ASD (N=25), (2) their unaffected siblings 

(N=20), or (3) TDC (N=17).  ASD participants had specific decreases in neural activity in areas including 

the right amygdala, ventromedial PFC, and bilateral fusiform gyri.  Interestingly, unaffected siblings had 

compensatory increases in brain activity vs. either those with ASD or TDC in the right ventromedial 

PFC—anterior and inferior to their other finding—as well as the posterior superior temporal sulcus.  

Thus, Kaiser’s study suggests both state and trait neural alterations associated with ASD 186.   

Greimel et al. examined empathy in (1) ASD adolescent boys (N=15 including N=12 with 

Asperger’s syndrome plus N=3 HFA), (2) fathers of ASD participants (N=11), (3) TDC adolescent boys 

(N=15), and (4) fathers of TDC participants (N=9).  Both ASD children and their fathers had significantly 

reduced activation of the right anterior fusiform gyrus compared to their age-equivalent TDC 

participants 187. 

 Among the studies using fMRI brain activation to evaluate diagnostic classification of 

participants, Lai et al. conducted a two-stage study of neural activation in ASD.  First, they evaluated 

brain activation while listening to human speech in ASD (N=12) and TDC (N=15) participants.  Then, they 

collected additional fMRI data in ASD participants while sedated for clinically-indicated MRI scans 

(N=27).  They correctly classified 26 of 27 (96%) of the sedated ASD participants from the second 

experiment using the mean amplitude and spread of neural activity in the superior temporal gyrus from 

the first experiment 188.   

 

Autism spectrum disorders:  Resting State Functional Connectivity (RSFC) 

The number of studies examining specificity of RSFC alterations in ASD is growing, thanks in part 

to data-sharing efforts such as “ABIDE”—the Autism Brain Imaging Database Exchange 189.  For example, 

DiMartino et al. compared RSFC among children with ASD (N=56), ADHD (N=45), or TDCs (N=50).  She 

found ASD-specific increases in RSFC in bilateral temporo-limbic regions, and also ADHD-specific 

increases in RSFC in right striatum and pallidus 75.  In another example, Chen et al. showed 79% accuracy 



using support vector machines to classifying analysis of low frequency fluctuations (ALFF) among with 

either ASD (N=112) or TDCs (N=128) ages 12-18 years 190. 

No doubt, the future will bring additional studies examining the potential of fMRI with and 

without task in classifying ASD, especially now that the challenge of splitting it into DSM-oriented 

subtypes has been removed, at least for now. 
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